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Feature selection technique is a knowledge discovery tool which provides an understanding of the prob-
lem through the analysis of the most relevant features. Feature selection aims at building better classifier
by listing significant features which also helps in reducing computational overload. Due to existing high
throughput technologies and their recent advancements are resulting in high dimensional data due to
which feature selection is being treated as handy and mandatory in such datasets. This actually questions
the interpretability and stability of traditional feature selection algorithms. The high correlation in fea-
tures frequently produces multiple equally optimal signatures, which makes traditional feature selection
method unstable and thus leading to instability which reduces the confidence of selected features.
Stability is the robustness of the feature preferences it produces to perturbation of training samples.
Stability indicates the reproducibility power of the feature selection method. High stability of the feature
selection algorithm is equally important as the high classification accuracy when evaluating feature
selection performance. In this paper, we provide an overview of feature selection techniques and
instability of the feature selection algorithm. We also present some of the solutions which can handle
the different source of instability.
� 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Recent advancement in high-throughput technologies such as
Next-generation sequencing (NGS), Microarray, Mass spectrometry
(MS), etc. open the new gateways for researchers to identify the
genetic cause of diseases (Mohammadi et al., 2016; Taylor et al.,
2015). Radiomics is an emerging technology where a medical
image provides crucial information regarding tumour physiology
(Parmar et al., 2015). These high-throughput representations suf-
fers from curse of dimensionality therefore it require a proper com-
putational method to extract knowledge from them (Hinrichs et al.,
2019). Microarray data contain many heterogeneity factors as it
contains an expression of every possible gene in the genome. It sci-
entifically proved that the genes which are responsible for some
biological process are interrelated to each other and some genes
are activators or inhibitors of others (Perthame et al., 2016). In
high-dimensional data, such as microrray datasets irrelevant fea-
tures can interfere with the true features, which in turn introduces
heterogeneity in the data and generate dependence across the fea-
tures. Statistical analysis loses its importance in case of dependent
features. So, we have to select features that play a vital role in esti-
mation and which are independent.

Identifying such independent genes(features) whose expression
patterns have meaningful biological links with phenotypic beha-
viours is important for knowledge discovery. Inmicroarray analysis,
biologists objective is to discover a small number of features which
explains the behaviour of microarray data (Kumar and Valsala,
2013). Selective meaningful biomarkers from microarray data are
important for patient stratification and for the development of per-
sonalized medicine strategies (Huang et al., 2015). From a machine
learning point of view controlling the number of features helps to
reduce over-fitting which lead to a better prediction of target
variable on training data. The dimensionality of the feature space
cite this article as: U. M. Khaire and R. Dhanalakshmi, Stability of feature
formation Sciences, https://doi.org/10.1016/j.jksuci.2019.06.012
challenges about building a model and questions the effectiveness
of knowledge discovery. Therefore, 10:1 per-class sample-to-
feature ration is recommended for the creation of robust classifiers
and predictive models (Kanal and Chandraskekaran, 1971).

The reason behind the feature selection is that classifiers
trained on reduced feature space are more robust and reproducible
than classifiers constructed on the original large feature space. In
feature selection, we particularly search for features or correlated
features. The features which do not provide useful information
are called irrelevant features and the features which do not provide
more information than the currently selected features are called
redundant features (Kumar and Minz, 2014). The features which
are not related or uncorrelated to class variables are called noise
which actually introduces bias in prediction and reduce classifica-
tion performance. Hence, noise should be handled for improving
the performance of prediction and it can be made possible with
dimensionality reduction. It can be achieved by either Feature
extraction or by Feature selection (Drotár et al., 2015).

In feature extraction, new features are derived from the original
input by choosing a new basis for the data. Feature selection helps
in reducing the effect of high dimensionality on the dataset by
finding the subset of features which will effectively define the data.
Directly evaluating the subset of features becomes the NP-Hard
problem (Chandrashekar and Sahin, 2014). To handle this issue
we try to use a suboptimal procedure with tracable computations.
We need to take care of another major issue where the feature is
dependent on response variable rather than on predictors. Feature
subset selection enables classifiers to focus on important features
whilst ignoring the possible misleading features. From a computa-
tional complexity point of view, having a parsimonious set of fea-
tures involved in the classification process helps in quickly scaling
many learning algorithms with additional features (Dunne et al.,
2002).
selection algorithm: A review, Journal of King Saud University – Computer
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A better feature selection algorithm should always provide ben-
efits such as insight into data, better classifier model, enhance gen-
eralization and identification of irrelevant features. It should also
help in understanding the relation between features and target
variables, reducing the computational requirement for solving a
particular problem, efficient dimensionality reduction in case of
high dimensional datasets where the number of observations are
less than the number of features, it can help in improving the pre-
dictor performance which is used to solve a particular problem and
increase the efficiency in terms of cost and time. Feature selection
process contributes to knowledge discovery where discovered fea-
tures can be used directly in future research. In bioinformatics,
identification of important features can suggest new metabolic
pathways and helps in identifying the hidden connection between
specific cellular processes (Dunne et al., 2002).

Stability of a feature selection algorithm produces consistent
feature subset, when new training samples are added or removed
(Xin et al., 2015). A feature selection algorithm is stable only when
it produces similar features under the training data variation.
Ignoring the stability issue of the feature selection algorithm may
draw a wrong conclusion. Among the highly correlated features,
discarding the features which are correlated to the selected fea-
tures but still associated with the response variable is one of the
main cause of instability (Kamkar et al., 2015). A problem is said
to be ill-poses if a small change in the input information causes a
large change in the output (Cui et al., 2019). Instability with
respect to the input data produces widely different output and
makes the solution unreliable. The idea of Regularization converts
an ill-posed problem in the stable form. Regularization modifies
learning algorithm in such a way that it reduces generalization
error but not training error.

The motivation of stability comes from increasing the confi-
dence of domain expert in the analysis of result and select features
which are relatively robust to the perturbation of input data
(Kalousis et al., 2007). Stability provides the best objective criteria
so that we can choose our feature selection algorithm, which will
provide high-quality feature subset and also provide higher confi-
dence in better classification performance. Strengthening of fea-
ture selection method with parallel analysis of stability develops
high-quality feature subset (Goh and Wong, 2016). In knowledge
discovery, stability plays an important role in feature selection to
identify important features (George and Cyril Raj, 2015). A feature
selection algorithm selects different subsets under perturbation of
input data though most of these subsets are equivalent in terms of
the classification performance (Li et al., 2015). Such unsteadiness
reduces the assuredness of experts in the validation of selected fea-
tures. Therefore it is very important to build a tough method to
select reliable and significant features which are strong against
the selection bias (Ambroise and McLachlan, 2002).

In the stability, the performance of the learning algorithm is
used as an objective function because the stability of feature selec-
tion technique does not talk much about the confidence of the
selected features. However, less stability does not imply low clas-
sification rate in every case (Somol and Novovicová, 2010). Stabil-
ity helps in the trade-off between bias-variance of the classification
error rate (Geman et al., 1992). Stability estimator of both the fea-
ture selection algorithm and classification algorithm does not cre-
ate a boundary between instability of feature selection algorithm
and classification algorithm. This issue can be tackled by the notion
of preferential stability (Chen et al., 2019). Theoretically, a trade-
off between bias-variance decomposition of feature selection error
proposes that to get more stable features we do not have to sacri-
fice predictive accuracy. A better trade-off between bias-variance
lead to more stable results with improved accuracy based on
Please cite this article as: U. M. Khaire and R. Dhanalakshmi, Stability of feature
and Information Sciences, https://doi.org/10.1016/j.jksuci.2019.06.012
selected features. Margin-based instance weighting variance
reduction is a better approach to achieve a better trade-off
between bias-variance (Han and Yu, 2012). Margin-based instance
weighting technique apply weight to each sample in a training set
based on its influence to estimate the feature relevance. The
hypothesis margin is used to measure the feature relevance at a
given instance. Finally, the weighted training set is given as an
input to the feature selection algorithm to select important
features.

Following factors are responsible for the stability of feature
selection algorithm: Dimensionality of the dataset (m), Number
of the selected features (k), Sample size (n), Variance of the data,
Symmetry of measurement where the stability value of the algo-
rithm should be insensitive to the order of the result, Criterion
used for feature selection and complexity of the feature selection
algorithm (Loscalzo et al., 2009). Apart from these factors, there
are other factors that cause instability, such as: Designing an algo-
rithm without considering the stability, The existence of multiple
sets of true markers and The Curse of dimensionality wherein
few numbers of samples over thousands of numbers of features
is a great source of instability (He and Yu, 2010).
2. Feature selection techniques

In this section, we have discussed the various feature selection
techniques present in the literature.

2.1. Filter-based feature selection

The important characteristics of the data are used to assess the
importance of feature for addition in the subset of features
(Khoshgoftaar et al., 2013). This technique is alienated into two dif-
ferent categories: Rank Based and Subset Evaluation Based. Rank
based category uses some univariate statistical techniques to eval-
uate the rank of each individual feature without considering the
interrelationship between features (Yang and Mao, 2011). This
technique flops to identify redundant features. Subset Evaluation
Based category uses multivariate statistical techniques to evaluate
the rank of the entire feature subset. The advantage of the multi-
variate statistical technique is, it consider feature dependency, no
need of classifier and it is more efficient than wrapper technique
in terms of computational complexity. The main drawback of the
multivariate technique is, it slower and less stable as compared
to the univariate ranking technique. Joint Mutual Information
and Maximum of The Minimum Nonlinear Approach filter tech-
niques produces the best trade-off between accuracy and stability
(Bennasar et al., 2015).

2.2. Wrapper-based feature selection

This technique incorporates supervised learning algorithm in
the process of feature selection. It ranks features based on the sub-
set evaluation technique. Correlation and dependencies between
the features are considered while selecting the features. Consider-
ing the bias of the prediction algorithm helps in optimizing the
performance of the algorithm. In support vector machine (SVM),
weight is assigned to each feature during the learning of SVM
(Zheng et al., 2019). The main drawback of the wrapper technique
is computational expensiveness due to searching of the optimal set
from large space of dimensionality. Wrapper technique has a high
risk of overfitting. SVM- Recursive Feature Elimination (RFE) and
Greedy Forward Selection (GFS) strategy are some examples of
the wrapper method.
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2.3. Embedded technique

The optimal feature subset is searched while building a classi-
fier. Method of selecting optimal feature subset is specific for the
given classification algorithm. Advantages of the embedded tech-
nique are the same as the wrapper technique but it is better in
term of computational complexity than the wrapper technique.
Lasso regression (Cynthia et al., 2019; Kang and Huo, 2019) and
elastic net (Zou and Hastie, 2005; Xiao and Biggio, 2015) are some
embedded techniques.

3. Feature searching strategies

In this section, we have discussed the different feature selection
strategies which are used by different feature selection techniques
present in the literature.

3.1. Forward sequential selection (FSS)

The objective of FSS is to create the optimal feature subset and
ignore irrelevant and insignificant features (Wan, 2019). It
searches for the best feature in every iteration and added to an
empty set of optimal features. If all features are already added or
if there is no improvement after adding any further feature, the
search stops and returns the current optimal set of important
features.

3.2. Backward sequential selection (BSS)

The objective of BSS is to consider the contribution of all fea-
tures in the beginning and then tries to remove the most irrelevant
and redundant features leaving a smaller optimal feature subset
(Wan, 2019). It searches for the feature to be removed in every iter-
ation from full dataset. The subsequent set is evaluated by some
validation procedure. If the evaluation rate of new feature subset
is better than the previous subset, then it replaces the current best
feature subset. This process is continued until every feature is
removed from the dataset and reaching an empty set. BSS outper-
forms the FSS in terms of computational performance.

3.3. Hill climbing (HC)

In HC either add or remove a feature from the dataset at a time.
It searches the optimal features from the random set of features
and then toggles the current status of each feature in the subset.
The stopping criteria is set by defining the number of iteration
Fig. 1. Stability value of Lustgarten’s measure for a different number of selected feature
the different number of selected feature [RIGHT].
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for the selection of the optimal set. After reaching the limit of
the last iteration returns the last optimal set of features (Wan,
2019).
4. Properties of feature selection stability measures

The stability estimator is used to calculate the robustness of fea-
ture selection algorithm to the input data perturbation by taking
the average similarity of all pair of selected subsets. The main chal-
lenge of stability measure is whether the metric of stability mea-
sure make sense when feature selection algorithm produces
feature subsets of different cardinalities. Every stability measure
should satisfy the given properties (Nogueira and Brown, 2016):

4.1. Fully defined

Sometimes feature selection procedure produces different size
of selected feature set when we iterate procedure n times. A good
stability measure should always consider this property.

4.2. Upper and lower bounds

For a better understanding of stability measure, the value of sta-
bility measure should be in a finite range. Suppose defined range of
stability measure is [�1, +1], then output value 0.9 will be
meaningless.

4.2.1. Deterministic selection?maximum stability
In Fig. 1 (left) (Nogueira and Brown, 2016) shows the different

stability value of Lustgarten’s measure for the different number
of selected feature, where other methods showing the constant
value of maximum stability for a different number of selected
features.

4.2.2. Maximum stability? deterministic selection
In Fig. 1 (right) (Nogueira and Brown, 2016) Wald’s measure

and CWrel returns a constant value of maximum stability i.e. 1,
for a different number of selected feature. Other methods show dif-
ferent stability values for a different number of selected features.

4.3. Correction for chance

This property ensures that when the feature selection proce-
dure selects a random number of features their estimated stability
value should be constant. Suppose, if the procedure P1 selects 5
[LEFT]. Wald’s measure and CWrel violate Property by giving constant stability over
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Table 1
Properties of Stability Measures.

Stability Measures Fully Defines Bounds Maximum Correction For Chance Monotonicity

Jaccard U U U U

Hamming U U U U

Dice U U U U

POG U U U

Kuncheva U U U

nPOG U U U

Wald U U U

CWrel U U U U

Tanimoto U U U U

Symmetrical U U U U

Canberra U U U

Spearman U U U U

Pearson U U U U
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features and procedure P2 selects 6 features, the estimated stabil-
ity value should be equal.

4.4. Monotonicity

Larger the intersection between feature subsets, greater the sta-
bility (Nogueira, 2018). Properties of different stability measures
are given in Table 1.

5. Stability measures

The output of the feature selection algorithm can be in the form
of a weighted score of each feature, the ranking of each feature or a
subset of important features. These are called evaluation criteria of
the feature selection algorithm. This evaluation criterion is divided
into two parts (Mostafa et al., 2019):

� Individual evaluation: In this ranking of features is assigned
according to its degree of relevance.

A weighted scoring: w = (w1, w2, . . .. . ., wm), w 2W � Rm

A ranking: r = (r1, r2, . . ..., rm), 1 � ri �m

� Subset evaluation: In this feature subsets are constructed using
the search strategy. Subset generation is the heuristic-search in
which each state specify a feature subset for evaluation in
search space.

Subset of features: s = (s1, s2, . . .. . ., sm), si 2 {0,1} where, 0 indi-
cate absence and 1 indicate presence of feature.

Stability measures are divided into three categories (Mohana,
2016):

� Stability by Index/Subset (SS)
� Stability by Rank (SR)
� Stability by Weight (SW)

5.1. Stability by Index/Subset (SS)

The selected subset of features is represented as a binary vector
of size ‘m’ where 0 represent absence and 1 represent the presence
of the feature. The stability is calculated by the amount of overlap
between the overall subset of selected features. Measurements of
stability by index are given as:

5.1.1. Hamming distance (HD)
This calculates the amount of overlap between the two subsets

(Mohana, 2016). It works with the binary vector of the selected fea-
ture subset. For larger m, H(Si, Sj) becomes smaller which leads to
the more stable algorithm.
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HðSi; SjÞ ¼
Xm
k¼1

jSik � Sjkj ð1Þ

Hamming distance has the same impact on the stability result
whether the feature Si is selected in cross-validation or not. This
will create less confidence about stability especially when the
number of selected features are very few as compared to the over-
all dimensionality of the dataset. For total W feature subsets total
hamming distance Ht is given as:

Ht ¼
XWj j�1

i¼1

XjWj

j¼iþ1

HðSi; SjÞ ð2Þ

The total stability of all pairwise feature subset in S is defined
by Average Normalize Hamming Distance (ANHD) (Mohana, 2016).

ANHDðSi; SjÞ ¼ 2 �Ht

n � Wj j � ð Wj j � 1Þ ð3Þ

ANHD have results in the interval of (Mohammadi et al., 2016).
0 indicate the algorithm is most stable and 1 indicate the algorithm
is not stable at all. The drawback of ANHD is it cannot deal with the
different size of selected features. ANHD failed the property of cor-
rection for the chance, therefore it can deceive the result.

Normalize Hamming Index (NHI) is represent by:

NHIðSi; SjÞ ¼ 1�HðSi; SjÞ
m

ð4Þ

The total stability of all pairwise feature subset in W is defined
by Average Normalize Hamming Index (ANHI).

ANHIðSi; SjÞ ¼
2 �PWj j�1

i¼1

PjWj
j¼iþ1NHIðSi; SjÞ

Wj j � ð Wj j � 1Þ ð5Þ

The value of ANHI represents the variation in the selected fea-
ture subsets. A higher value of ANHI gives more information about
variation in feature subsets. Hamming distance measures failed in
case of counting the intersection between two subsets.

5.1.2. Dice-Sorensen’s index (DSI)
It calculates the overlap between two selected feature subsets

(Mohana, 2016).

DiceðSi; SjÞ ¼ 2jSi \ Sjj
Sij j þ jSjj ð6Þ

DSI give a result in the range of (Mohammadi et al., 2016). 0
indicates the two subsets are totally disjoint and 1 indicates the
two subsets are identical to each other. DSI sometimes give slightly
better and meaningful stability results because they are not
divided by the union of subsets. On the other hand tanimoto dis-
tance and jaccard’s index is divided by union of subsets.
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5.1.3. Tanimoto distance (TD)
Tanimoto distance calculates the amount of overlap between

the two subsets of features and produces the value in the range
of (Mohammadi et al., 2016). 0 indicates the two subsets are totally
disjoint and 1 indicates the two subsets are identical to each other.
It is the generalized version of Jaccard’s index (Mohana, 2016).

TðSi; SjÞ ¼ 1� Sij j þ Sj
�� ��� 2jSi \ Sjj

Sij j þ Sj
�� ��� jSi \ Sjj

ð7Þ
5.1.4. Jaccard’s index (JI)
Jaccard’s index (Mohana, 2016) measures the average similarity

from all pairwise selected feature subsets (W).

JðSi; SjÞ ¼ jSi \ Sjj
jSi [ Sjj ð8Þ

JS ¼ 2
Wj j � ð W� 1j jÞ

XWj j�1

i¼1

XjWj

j¼iþ1

JðSi; SjÞ ð9Þ

The stability index (JS) gives result in the rage of (Mohammadi
et al., 2016) where value close to 0 indicates feature selection algo-
rithm is unstable and value near 1 means algorithm is stable. The
number of samples in the dataset influence the Jaccard’s Index. Jac-
card index can take correlation of features into account using:

JCiðKÞ ¼ Si \ Sj
�� ��þ fCi

K
ð10Þ

K = Cardinality of Si and Sj
fCi = Sum of correlation values between dissimilar features.
For P selected subsets of data, stability is given by:

JC
�
ðKÞ ¼

PP
i¼1JCiðKÞ

P
ð11Þ

Both TD and JI give higher result when k = m. TD and JI are effi-
cient as compared to DSI when the selected feature subsets have
different cardinalities. They do not consider the dimensionality of
the dataset (m) while calculating the similarity, but they compro-
mise the number of selected features (k) in the measurements.

5.1.5. Kuncheva index (KI) or consistency index (IC)
Because of the large size of selected feature subsets, stability

estimators indicates higher overlap between the feature subsets.
To overcome this drawback KI uses the correction term which dis-
cards the intersection by chance between the two selected feature
subsets (Kuncheva, 2007). This also called a consistency index (Ic).

IcðSi; SjÞ ¼
Si \ Sj
�� �� �m� k2

k � ðm� kÞ ð12Þ

The result of KI is in the range of [�1, 1]. 1 indicates the subset
Si and Sj are identical. �1 indicates two subsets have no intersec-
tion. 0 indicate for the independently drawn list. Average of all
pairwise consistency indices is taken to calculate the consistency
of more than two subsets.

AIc ¼ 2
Wj j � ð W� 1j jÞ

XWj j�1

i¼1

XjWj

j¼iþ1

IcðSi; SjÞ ð13Þ

New similarity measure has been introduced to improve Ic:

SaðSi; SjÞ ¼
Si \ Sj
�� ��� jSi j�jSj j

m

min jSij; Sj
�� ��� ��maxð0; jSij þ Sj

�� ���mÞ ð14Þ

The result of Sa is in the range of [�1, 1]. 0 value indicates the
stability of independently drawn random features, a positive value
indicates the particular feature selection method is stable and neg-
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ative value indicates the method is unstable. Adjusted stability
measure (ASM) is the new stability measure which combines the
result of multiple measures (Lustgarten et al., 2009). It can calcu-
late the stability of subsets of unequal sizes.

ASM ¼ 2
Wj j � ð W� 1j jÞ

XWj j�1

i¼1

XjWj

j¼iþ1

SaðSi; SjÞ ð15Þ

The intersystem similarity measure is very helpful in evaluating
the similarity between the different feature selection method out-
comes. It provides the diversity of feature selection methods. It
compares the behaviour of two different feature selection methods
on the same input dataset and sometimes compares two feature
selection methods on two different datasets with the same feature
selection setting.

5.1.6. Percentage of overlapping Gene/Features (POG)
It measures the consistency of selected feature subsets by

counting the amount of intersection between selected feature sub-
sets. POG is non-symmetric i.e. POG(Si, Sj) – POG(Sj, Si) (Mohana,
2016). It will be symmetric if |Si| = |Sj|

POGðSi; SjÞ ¼ jSi \ Sjj
jSij ð16Þ

POG matrix measures the consistency between the differen-
tially expressed genes. The drawback of POG is it did not consider
the correlation between features. To overcome the drawback of
POG, POGR has been introduced (Mohana, 2016).

POGRðSi; SjÞ ¼
Si \ Sj
�� ��þ Z

jSij ð17Þ

Z = Number of genes in Si that are absent in Sj but considerably
positively correlated to at least one gene in Sj.

Z captures the correlation between features and consider such
features as a single feature. Normalize version of POG and POGR
discards the dependency between the results.

nPOGðSi; SjÞ ¼
Si \ Sj
�� ��� EðjSi \ SjjÞ

Sij j � EðjSi \ SjjÞ ð18Þ

nPOGRðSi; SjÞ ¼
Si \ Sj
�� ��þ Z� E Si \ Sj

�� ��� �þ EðZÞ
Sij j � E Si \ Sj

�� ��� �� EðZÞ ð19Þ

E Si \ Sj
�� ��� � ¼ Expected value of the shared feature

E(Z) = Number of features in the Si which are not shared but
positively correlated with features in Sj.

POG and POGR are bunded by the interval (Mohammadi et al.,
2016). Similarly, nPOG and nPOGR are bounded in the interval of
[�1, 1]

5.1.7. Consistency measures (CM)
Stability value produces by different stability estimators on the

same system are bounded in different ranges, this makes them
hard to compare (Somol and Novovicová, 2010). Most of the avail-
able measures are applicable only for the feature selection problem
with the prespecified size of a subset (k). To overcome the above
issue new modified stability measure has been introduced. The
designed stability measure produce result in the range of
(Mohammadi et al., 2016). Stability measure of value 1 represents
the stable feature selection algorithm and value 0 represents a low
level of feature selection algorithm stability. This evaluation of sta-
bility is based on the frequency of feature occurrences. X is the sub-
set of Y representing all features in S. Ff is the occurrence of feature
f in system S. N is the number of occurrence of any feature in sys-
tem S. The minimum value (Fmin) of occurrence of feature f is 1 and
the maximum value (Fmax) is ‘m’. Stability value of the feature f 2 X
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is bounded in the range of (Mohammadi et al., 2016). 0 indicates
feature f is present in only one subset among the n subsets in sys-
tem S. 1 indicates feature f exists in every subset of the system S.
Consistency (C(f)) of the feature f in the system S is given as:

CðfÞ ¼ Ff � Fmin

Fmax � Fmin
ð20Þ

To define the consistency of the whole system

CðSÞ ¼ 1
jXj

X
f�X

CðfÞ ð21Þ

This measure overemphasizing the lower frequency features,
therefore weighted consistency CW(S) has been introduced
(Lustgarten et al., 2009).

CWðSÞ ¼
X
f�X

Ff
N

� Ff � Fmin

Fmax � Fmin
ð22Þ

Whenever m > |X|, it indicates that features are present in more
than single subset and therefore CW(S) > 0. The selected feature
subsets automatically get more similar to each other when the size
of the selected feature subsets comes closer to the actual size of the
dataset. In this situation applying CW(S) for various feature selec-
tion methods may yield the less confident result. Producing the
system of differently sized subsets is called the problem of
subset-size bias. Relative weighted consistency (CWrel) tackle this
problem by suppressing the effect of the size of subsets in a
system.

CWrelðS;YÞ ¼ CW Sð Þ � CWminðN;n:YÞ
CWmaxðN;nÞ�CWminðN;n:YÞ ð23Þ

CWminðN;n;YÞ ¼ N2 � Yj j N� Dð Þ � D2

Yj j �Nðn� 1Þ ð24Þ

CWmaxðN;nÞ ¼ H2 � N� Dð Þ �H � n
N � ðn� 1Þ ð25Þ

D = N mod |Y|
H = N mod m
CWrel incorporates randomness into the feature selection.

5.1.8. Symmetrical uncertainty (SU)
SU is an entropy-based nonlinear correlation (Mohana, 2016). It

takes feature value in the account while calculating stability, not
the feature indices. SU identifies the correlated features in all
selected subsets. Information gain, IG (Si | Sj) = IG (Sj|Si) this prop-
erty makes SU a symmetric measure. SU has one undesirable prop-
erty of not bounding by any constant.

SUðSi; SjÞ ¼ 2
IG Sið jSjÞ

H Sið Þ þHðSjÞ
� �

ð26Þ

IG = Information Gain = H(Si) � H(Si|Sj)
H(Si) = Entropy =

P
x2Sip xð Þ � log2ðpðxÞÞ

H(Si|Sj) =
P

y2SjpðyÞ
P

x2Sip xjyð Þ � log2ðpðxjyÞÞ
The computation of IG for every pair of selected features make

SU computationally expensive. The result of SU influence by the
number of selected features (k) and the awful result arises when
k = m.

5.2. Stability by rank (SR)

The correlation between features is evaluated to quantify the
stability of feature selection method using feature ranking. The
main drawback of these measures is they cannot handle subsets
of features with different cardinality.
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5.2.1. Spearman’s rank correlation coefficient (SRCC)
Stability of two ranked sets of features Ri and Rj is given by:

SRCCðRi;RjÞ ¼ 1� 6
X
t¼1

ðRit � RjtÞ2
mðm2 � 1Þ ð27Þ

The value of SRCC is in the range of [�1, 1]. Two ranks of fea-
tures are identical when SRCC value is 1 and exactly inverse order
when �1. 0 indicate no correlation between Ri and Rj. The overall
stability of all feature subsets is:

ASRCCðRi;RjÞ ¼ 2
Wj j � ð W� 1j jÞ

XWj j�1

i¼1

XjWj

j¼iþ1

SRCCðRi;RjÞ ð28Þ
5.2.2. Canberra distance (CD)
This measure shows the absolute difference between two rank

sets (Mohana, 2016). Value of the CD is directly proportional to
the number of features. Higher the value of m, larger the value of
the CD.

CDðRi;RjÞ ¼
Xm
t¼1

jRit � Rjtj
Rit þ Rjt

ð29Þ

Weighted version of CD can be define as:

WCDðkþ1ÞðRi;RjÞ ¼
Pm

t¼1jmin Rit; kþ 1f g �minfRjt; kþ 1gj
min Rit;kþ 1f g �minfRjt;kþ 1g ð30Þ

The result of CD is bounded in between (Mohammadi et al.,
2016). Top k features are considered as the most important fea-
tures. Both CD and WCD is normalized when divide by m.

5.3. Stability by weight (SW)

These measures consider the weight of feature set f while calcu-
lating the robustness of feature selection algorithm. It takes the
two sets of weight Wi and Wj for the complete feature set in data-
sets and returns the correlation between them as the stability. The
main drawback of these measures is it cannot deal with the subsets
of features of different sizes.

5.3.1. Pearson’s correlation coefficient (PCC)
PCC calculates the correlation between the weights of the

selected subsets of the features (Geman et al., 1992). PCC returns
the result in a range of [�1, 1]. 1 means weight vector perfectly
correlated and �1 indicate weight vectors are anti-correlated. 0
indicates no correlation between weight vectors. For a larger num-
ber of features weight approach to 0 indicates higher stability. PCC
is the symmetric stability measure.

PCCðWi;WjÞ ¼
PðWit � lWi

ÞðWjt � lWj
ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðWit � lWi

Þ2 P ðWjt � lWj
Þ2

q ð31Þ

l = Mean of the feature set f
In (Geman et al., 1992) different feature selection algorithm

applied on a dataset for getting ranks, weights and subsets of
features. Stability evaluation by using weights of feature (Sw)
provides a better understanding as compared to using the rank-
ing of features (SR) because it uses actual feature coefficients.
Highest stability is given by Sw. Stability value using subsets
(SS) does not correlate with the other two measures. High cardi-
nality of the selected feature subsets indicates the more proba-
bility of features in common. Therefore stability value will also
increase.

A novel stability estimator is proposed in Zheng et al. (2019)
which satisfy all the desired properties of stability measure. This
novel stability measure is given as:
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UðzÞ ¼ 1�
1
m

Pm
i¼1f

2
i

k
�

m 1� k
�

m

� 	 ð32Þ

f2i ¼ N
N� 1

Pf ð1� Pf Þ ð33Þ

k
�
= Average number of features selected over the N feature set

in z.

f2i = Sample variance of zf.

The value of estimator is in the range of (Mohammadi et al.,
2016).

6. Solution to instability

Till date, we have various methods to solve instability of feature
selection algorithm. In this segment, we tried to cover all methods
present in the existing literature. Fig. 2. Summarise the different
methods to solve the different source of instability.

6.1. Feature information strategy

Feature information strategy measures the significance of each
feature based on some assessment standards like the accurate
measure of class variable. Then stable features have been selected
from these highly important features (Liu et al., 2017). Feature
Importance in Nonlinear Embedding (FINE) approach is used for
the ranking of features based on their contribution to accurate clas-
sification in low dimensional space. This low dimensional feature
space is achieved via Non-Linear Dimensionality Reduction (NLDR)
(Ginsburg et al., 2016). Since features in low-dimension are less
sensitive to small data perturbation, feature ranking is more stable
than traditional filter method.

Multi-knockoff procedure guarantees False Discovery Rate
(FDR) control and has better statistical properties than single
knockoff procedure even when the number of prominent features
is small (Gimenez and Zou, 2018). Knockoff procedure allows us
to discover important features while controlling the FDR. The
advantage of the knockoff is that if we have a good model of fea-
ture X then we can identify significant features without consider-
ing how output Y depend on feature X. By averaging over the K
multi-knockoff decrease the threshold of the minimum number
of rejection which leads to improvement in power and stability.

Extracting hybrid-features is better than extracting basic-
features because it contains in-flow behavior of features. In-flow
Fig. 2. A network of stable fe
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behavior characteristics of traffic flow have been analyzed to select
important features from traffic data of mobile app (Liu et al., 2019).
A metric is designed to measure the degree of drift of flow features.
Based on this a composite metric ranks a feature. Discrimination
power and Degree of drift evaluation based Feature Selection
(DDFS) algorithm is designed based on the above metrics to dis-
cover the discriminative and stable features. DDFS selects features
of high discrimination capability but a lower degree of drift.

SVM-REF is a multivariate iterative backward feature selection
method. It takes interaction between features into account while
assessing the relevance of the features (Lahmiri and Shmuel,
2019). To improve the stability against the input data perturbation,
9-fold cross-validation is used. The Cumulative Ranking Score
(CRS) of all features is calculated in every iteration, which is used
to compute the importance of each feature in creating a difference
between classes. This parameter combined the ranking of the fea-
tures gained from different subsets. The features having high
cumulative ranking are robust and exact set of genes which are
responsible for the disease.

6.2. Feature relatedness

Feature relatedness computes the connection between the fea-
tures. Covariance-lasso (C-LASSO) calculate the resemblances
between features with the help of feature covariance matrix. It
addresses the instability of L1-norm. The objective function of C-
LASSO is given as (Kamkar, 2016):

Jargmin
b;X b;Xð Þ1

2
¼ y� Xbj jj j22 þ k bj jj j1 þ

g
2
bTX�1b ð34Þ

Such that, X � 0, tr(X) = 1
X = Covariance matrix
k, g = Tunning parameters

Model fitting and sparsity are the essential components for the
accuracy of the regression model. Tunning parameters balancing
the trade-off between these two components. Cohen’s kappa coef-
ficient is used to measure the similarity between the two feature
sets. Covariance SVM (C-SVM) identifies the correlation between
the features using convex objective function and select relevant
features (Kamkar et al., 2015). Combination of SVM with Elastic
net penalty yields new regularization formation to find a connec-
tion between features based on their relatedness (Ye et al., 2011).

Max-Min Correntropy Criterion (MMCC) is a new formula-
tion explored for the feature selection. Correntropy is a local
similarity measure in Information Theoretic Learning (ITL)
ature selection methods.
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(Randall et al., 2019). Kernel width influences the performance of
Correntropy, smaller kernel width is responsible for data loss. In
contrary, high kernel width makes Correntropy weak against the
high corruption and non-gaussian noise. The ANHD value of MMCC
almost reached to 0, which indicates the robust nature of MMCC
against the noise and outliers (Storn and Price, 1997). MMCC
algorithm does not have ‘out of memory’ issue (Brest et al., 2006).

The combined network of synergistic proteomics is used to
overcome its passive coverage and consistency issue (Bensimon
et al., 2012; Goh et al., 2012). Ranked-Based Network Algorithms
(RBNAs) is a network-based algorithm which proved its utility in
case of selecting important features with high stability (Selvaraj
et al., 2018). Three benchmark approaches of RBNAs has been
introduced: 1. SNET (SubNet) (Liu et al., 2019) 2. FSNET (Fuzzy
SNET) (Soh et al., 2011) and 3. PFSNET (Paired FSNET) (Lim and
Wong, 2014). In SNET, if the protein gi is among the top n% most
influential protein in the tissue pk then fs (gi, pk) = 1, otherwise fs
(gi, pk) = 0. FSNET is similar to SNET except for function fs (gi, pk)
is assigned a value between 1 and 0. In PFSNET, fs (gi, pk) define
score d(S, pk, X, Y) for complex S and tissue pk with respect to
the classes X and Y.

d S; pk; X; Yð Þ ¼ Score S; pk; Xð Þ � Score S; pk; Yð Þ ð35Þ
Subgroup based Multiple Kernel Learning (MKL) is used for clas-

sification of biomedical image texture datasets. The main objective
of MKL is to observe its performance incorporate stability in fea-
ture selection (Fernandez-Lozano et al., 2015). MKL eliminate fea-
tures with similar characteristics and selects only features which
increase the understanding of the results. MKL perform for multi-
ple feature selection. Grouping of features by an external criterion
allows to include a single feature which is represented by its own
base kernel. It also allows the MKL algorithm to select the correct
kernel parameter. This will select the most representative features
of the problem.

Unsupervised Graph Self-Representation Sparse Feature Selec-
tion (GSR-SFS) combined subspace learning with feature selection
method which improves the interpretability of features (Zhu et al.,
2013; Hua et al., 2017). In this method, feature level self-
representation loss function and L2, 1-norm regularization term,
represent every feature by its relevant features. The idea behind
the feature level self-representation loss function is that the most
powerful feature has more chances to represent other features
jointly. In contrary, the less powerful feature has no chance to rep-
resent other features. The L2, 1-norm regularization term penalizes
all coefficient in order to joint selection or rejection of features for
the prediction of the response variable. Graph regularisation term
conducts subspace learning and improves stability by maintaining
the original structure of data into low-dimensional space. In self-
representation graph low-rank dimensionality reduction (SGLR),
low-rank constraint and a graph Laplacian regularizer are used to
conduct subspace learning in unsupervised feature selection (He
et al., 2016).

LASSO is inconsistent when performed on correlated data
because it allocates a nonzero weight to only a single feature
among a group of correlated features (Yuan and Lin, 2006). Flexible
factor modelling for the covariance can create robust feature selec-
tor (Grollemund et al., 2019; Ramondta and Ramírezb, 2019). A
supervised factor analysis model takes advantage of flexible
parametrization and shows the dependency by existing latent fac-
tors. Dependence is capture in low dimensional space. After adjust-
ment or latent effect, weak correlation applied to decorrelated
data. Decorrelation in factor adjustment leads to better perfor-
mance. LASSO select less number of features in the presence of fac-
tor adjusted data. Factor adjustment helps in blocking the effect of
heterogeneity, improves stability and prediction error of selected
variables.
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6.3. Sample weighting

The principle behind this technique is to assign different
weights to each sample based on the influence of sample on the
feature relevance. The local profile of feature relevance is used to
measure the influence of every sample (Li et al., 2017). Then the
feature selection algorithm train on the weighted training set.

Feature weighting as Regularised Energy-Based Learning (FREL)
is a new feature selection algorithm which is guided by Energy-
Based Learning (LeCun et al., 2006). FREL predicted the stability
under L1 and L2 regularization. Because of the nature of L1-norm,
the sparse solution is produced by the feature selection algorithm.
Sparsity and stability are the different sides of the same coin for
classification and regression problems (Xu et al., 2012). The sparse
algorithm is not stable and they can identify redundant features.
Therefore the sparse algorithm has a non-unique solution and thus
may be ill-posed. Value of energy function measure the goodness
of fit and decides the degree of compatibility of a model between
input variable x and output variable y. A small value means highly
compatible configuration and large value means highly incompat-
ible configuration. The difference between the energy of the correct
answer and the incorrect answer for xi is defined as the generalize
margin loss of the sample. FREL compute the feature weight and
then convert them into feature rank. The feature with the large
weight has a high rank and feature with less weight have low rank.

Maximum Relevance Minimum Redundancy (MRMR) have two
different criteria: Mutual Information Difference (MID) and Mutual
Information Quotient (MIQ). Balancing the trade-off between max-
imum relevance and minimum redundancy is necessary for the
stable feature selection. A feature may have different weights for
the relevance and redundancy in the feature selection. This weight-
ing parameter helps in controlling the stability of MRMR (Gulgezen
et al., 2009).
6.4. Parameter optimization

To solve the instability problem, the feature selection method is
used in the course of the parameter optimization process. The idea
is to select an active set of parameters which optimize the current
optimization process. The author investigated the nonlinear
regression model with the squared error function and the logistic
regression model with the cross-entropy error function
(Isachenko and Strijov, 2018). Newton method is used for nonlin-
ear regression and Gauss-Newton method for model linearization.
The Newton method for logistic regression brings Iteratively
Reweighted Least Square (IRLS) algorithm (Isachenko and Strijov,
2018). The Quadratic Programming Feature Selection (QPFS)
(Katrutsa and Strijov, 2017) is used to select an optimal set of
parameters. QPFS identify the most impactful parameters on
model residuals. The proposed algorithm achieves less error and
more stability as compared to other methods.
6.5. Intensive search approach

Intensive search approaches include parallel search strategies
and a Genetic Algorithm (GA) (Sakae et al., 2018). Most of the search
processes stuck at potentially different local maxima, therefore, dif-
ferent search techniques improves the stability by increasing the
scope of the search by considering most candidate mask at each
decision point. In GA, the initial element is the binary vector of
length N containing either 0 or 1. A strong set of features is
produced by doing the reproduction of the highest performing vari-
ables. This process continues until we get the best set of features for
the search problem (Sakae et al., 2018). Choice of parameters in the
GA creates a huge impact on the performance. The significant size of
selection algorithm: A review, Journal of King Saud University – Computer
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the population and a reasonable number of generations incorporate
heavy runtime computational expenses in GA.

An Improved version of Grey Wolf Optimization (IGWO) tech-
nique has been used to select optimal features that determine
the protein structures (Sharma and Gupta, 2018). Grey wolf opti-
mization (GWO) is an evolutionary algorithm which mimics the
hunting behaviour and leadership hierarchy of grey wolves
(Mirjalili et al., 2014). The hunting behaviour of grey wolf includes
hunting, looking, circumscribing the prey and attacking (Sharma
and Gupta, 2018). The leadership hierarchy of the grey wolf is
divided into 4 types- a, b, d and X. The proposed IGWO technique
gives maximum accuracy with ANN classifier.

6.6. Group feature selection

The idea behind this technique is to group the highly correlated
features present in high-dimensional datasets which are resistance
to the variations of training samples. The stability of the selection
process can be improved, if we consider this group as a single
entity (Li et al., 2017). Fig. 3 shows the process flow of group fea-
ture selection.

There are two key features in group feature selection: Feature
Group Generation and Feature Group Transformation. Feature
group generation identifies the groups of associated features. This
can be done by Knowledge-driven methods or Data-driven meth-
ods. The knowledge-driven method requires deep domain knowl-
edge to form groups and data-driven methods use information
contained in input data for group formation. Feature group trans-
formation produces a lucid picture of the feature group.

6.6.1. Data-Driven group generation
Data-driven group generation recognizes a group of features

using either cluster analysis or density estimation (Jeitziner et al.,
2019). Instead of relying on domain knowledge of biology they
form groups based on information contained in input data.
Group-lasso is applicable when different groups form by correlated
features (Jacob et al., 2009). However, group-lasso found unsuit-
able when the features are naturally present in its tree structures.
For this kind of features, tree-lasso is suitable for interpretability of
features (Kamkar et al., 2015). Tree-lasso achieves correlated fea-
tures in the form of hierarchical structure.

Tree – guided Recursive Cluster Selection (T-ReCS) method
effectively selects group of features (Villaruz et al., 2015). T-ReCS
improves predictive stability without compromising with accu-
racy. It cures the instability by selecting important features at
the cluster level. T-ReCS can efficiently handle features which do
not belong to a cluster (called orphan features) without having
prior knowledge of cluster. Initial cluster formed with the help of
Max-Min Parent Children (MMPC) algorithm (Lagani and
Athineou, 2017). Size of the cluster is based on the threshold value
Fig. 3. Group feature se
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defined by the user. A hierarchical tree structure pointing out
towards the resemblance between variables. Leaf of the con-
structed tree represents a single variable and internal node repre-
sents a cluster of variables. A deeper node in a tree has a more
similar pattern among its members. The tree structure is generated
by Recursive K-means Spectral clustering (ReKS) which formed a
tree with effective speed and gives a more balanced tree when
applied to heterogeneous data (Huang et al., 2013).

Fused-lasso is used when features are highly correlated due to
the ordering between them (Tibshirani and Saunders, 2005).
Fused-lasso selects neighboring features and improves feature sta-
bility. For stable feature selection in the diagnosis of Alzheimer’s
disease a non-negative fused-lasso incorporates two important fac-
tors: Spatial cohesion of lesion voxels and a positive correlation
between explanatory and response variables (Tichý et al., 2019).
The model does not select negatively correlated features because
of the additional non-negative constraints. To solve constraint
optimization and prove its convergence, Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) is used. This procedure allows us
to discover features which are truly responsible for Alzheimer’s
disease while controlling the false discovery rate.

A stable feature selection should provide consistency among
repeated Electroencephalography (EEG) measurement of the same
condition on the same subject over the course of time (Lan, 2018).
The Intra-class Correlation Coefficient (ICC) is a stability estimator
which describes the resemblance of data in the same group
(McGraw and Wong, 1996). Larger ICC value indicates higher sim-
ilarity among the group data. Features with higher ICC value are
more stable and can better discriminate different emotions.

6.7. Ensemble feature selection

Ensemble learning technique works on the idea of ‘‘Wisdom of
crowds” which contains that large groups of people are collectively
smarter than even individual experts when it comes to problem-
solving, decision making and predicting. Ensemble learning is a
part of machine learning which effectively produces a robust and
accurate learning solution (Wang and Chiang, 2011). Ensemble
learning technique use bagging technique which takes the average
of several learning techniques builds from random subsamples of
the original dataset (Diren et al., 2019). Different partitioning of
the training data selects different routes in the output. This prob-
lem can be solved by aggregating several runs of a sequential
search (Sánchez et al., 2019). An ensemble solution to instability
helps in stabilizing the process. It incorporates stability considera-
tion into designing stage of the algorithm (Dessì and Pes, 2015).
Fig. 4. Contain the outline of ensemble feature selection.

Diverse local learners can be constructed by Data perturbation
and Function perturbation. Data perturbation uses bootstrapping,
over-sampling, under-sampling to generate random subsamples
lection framework.
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of the dataset and apply the feature selection technique on each
generated subsample. In the end, an ensemble method combines
the results generated by the same feature selection method
(Chatterjee, 2019). In function perturbation, different feature selec-
tion methods are applied to the same datasets. Like in the ensem-
ble method different feature ranking list is combined into a single
set to get stable features.
6.7.1. Data perturbation
Survival Count on Random Subsamples (SCoRS) method helps in

removing irrelevant features in functional Magnetic Resonance
Images (fMRI) (Rondina and Hahn, 2014). This study is based on
the survival frequency of features after several iterations instead
of relying on the coefficient values given by the L1-norm regression
(Meinshausen and Buhlmann, 2010). Stable features are selected
by the repetitive application of L1-norm under data perturbation.
The features that survive in a large fraction of perturbation even
after several iterations are considered as important features. A
threshold value is used to select topmost stable features. More sig-
nificant features can be selected by the recombination of features
in different subsets.

Recursive feature elimination (RFE) machine learning approach
classify the samples by iteratively eliminating the least influential
features. Performance benchmark is done by Precision, Recall and
F-Score (Patil and Rao, 2018). Cross-validation is generally used
for error estimation but it shows large variance when applied to
small-sized data, therefore, it creates ambiguity in result (Braga-
Neto and Dougherty, 2004). Multi-Criteria Fusion Based Recursive
Feature Elimination (MCF-RFE) improves the stability by selecting
the significant features which are less sensitive to the incorrect
estimation of statistical parameters like mean, variance, standard
deviation, etc (Du et al., 2016). MCF-RFE use score-based and
ranking-based fusion methods to generate feature ranking (van
Erp and Schomaker, 2000; Yan and Zhang, 2012).

Stability deficiency and balanced decision tree decrease the
robustness of random forest. Selecting important features using
an iterative procedure help to overcome this limitation (Park and
Kim, 2015). Regularised Random Forest (RRF) and lasso are used
for the classification of High-Dimensional Shape Description
(HDSD) of brain morphometry (Wade et al., 2017). Lasso give more
classification accuracy, however, RRF and No Feature Selection
(NFS) gives a more robust performance.
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Sequential Random K-Nearest Neighbor (SRKNN) is a wrapper
technique based on the nearest neighbour ensemble classifier
(Park and Kim, 2015). A non-hierarchical structure of the nearest
neighbour classifier remove the instability and high variance
occurred in the random forest approach. SRKNN select features
based on the firmness of features and not on training accuracy. This
property improves the stability of SRKNN in feature selection.

L1-norm SVM efficiently removes irrelevant and insignificant
features using backward feature elimination method based on fea-
ture ranking (Moon and Nakai, 2016). Ensemble selection for L1-
norm shows the remarkable score for stability as compared to
other methods. To generate more converge results, bootstrap sam-
ples are drawn from training datasets using bagging technique. The
regularization parameter of L1-norm SVM is optimized for every
generated bootstrap sample. The linear kernel is used as a kernel
function because it is less prone to overfitting. A feature having
coefficient value 0 is eliminated from the bootstrap sample and
then cross-validation score has been recorded. This procedure is
iterated until no feature has a coefficient value 0. Finally, a set of
significant features is produced by adding all remaining features
in the bootstrap sample.

The aggregation approach produces impressive stability
improvement as compared to standard wrapper-based feature
selection techniques because both FSS and BSS are deterministic
and produces a similar output in every iteration on the same train-
ing data. After finishing all trials, the matrix of the collected mask
is used to form the Aggregated Frequency Histogram (AFH). This
histogram selects the most frequent features. A feature is selected
from AFH based on some threshold value and those exceeded the
threshold value are added in a final set of features.

Evolutionary Algorithms Feature Selection Stability Improve-
ment System (EAFSSIS) is made up of two components: 1. Filter
ensemble ranking 2. Feature selection method. Training data gen-
erated by cross-validation is given as an input to the filter ensem-
ble ranking which generates several groups of samples. Then filter
methods are applied on every generated sample to rank features.
The final rank of the feature is yielded by the ensemble method.
Finally, the ranking result along with the training data are given
as input to feature selection method to select significant features.

6.7.2. Function perturbation
In function perturbation, averaging the outcome of different

feature selectors on the same input dataset give the final result.
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Different feature selection techniques, instance-level perturba-
tion, feature-level perturbation, stochasticity in the feature
selector, etc. incorporate the variation in the feature selectors.
Weighted voting can be used for the aggregation of different
selection techniques.

A base feature selectors derived from FREL is trained on the
bootstrap samples derived from the original training data (Tran
et al., 2019). Averaging the outcome of base feature selectors gives
the final rank of the feature. There are various functions of the rank
aggregations (Haury et al., 2011; Abeel et al., 2010). Finally, each
aggregation strategy gives the list of top features with the largest
score and higher stability.

7. Discussions

We summarized the different modes of feature selection tech-
niques and feature selection strategies in Section 1. Features
selected by the wrapper-based and embedded techniques some-
times do not perform well with the other classifiers because they
both utilize their own learning algorithm for feature selection.
Computational complexity of filter-based technique is less as com-
pared to embedded and wrapper-based techniques. The complex
nature of wrapper-based techniques creates the high risk of over-
fitting. Filter-based methods provide more stable sets of selected
features due to their robust nature against overfitting (Hastie
et al., 2001). They generally use univariate or multivariate statisti-
cal techniques and independent of any learning techniques. Back-
ward sequential selection feature selection strategy outperforms
forward sequential strategy and hill climbing strategy in term of
computational complexity. Hill climbing strategy is more optimal
but its random nature increases its complexity.

Designing an algorithm without considering the stability, exis-
tence of multiple equally predictive feature subsets and the curse
of dimensionality are the common sources of instability. The curse
of dimensionality hinders the selection of stable features therefore
research progresses in the related field will develop better stable
feature selection algorithm. Other than above mentioned sources
of instability, some properties of feature selection techniques such
as number of selected variables, sample size, criteria used for fea-
ture selection and complexity also affects the stability.

In this review, we have discussed almost all stability measures
based on index, rank and weight of the selected features. There are
numerous techniques exists which is used to measure the stability
based on index and rank but there are only few techniques to mea-
sure stability based on weights. Among the various stability mea-
sures, only Pearson’s correlation coefficient computes the
stability by considering the weight of the feature. Our main con-
cern is that stability measures are unstable which means if we
run different stability measure on the same feature selection algo-
rithm, we will get different values of stability measures. Another
problemwith stability measures is that not a single measure fulfills
all the required properties of stability measure.

By the extensive survey of finding a solution to the instability of
feature selection algorithm, group feature selection and ensemble
feature selection are the most widely used methods. Group feature
selection was used because of the presence of highly correlated
features in the high-dimensional dataset. However, a grouping of
features reduces the instability by a small amount because of the
reproducibility issue in the transformed phase. Ensemble feature
selection provides a more general-purpose solution. Along with
the function perturbation and data perturbation, hybrid perturba-
tion in the ensemble feature selection applies the data perturba-
tion in the initial stage and function perturbation in the final
stage to improve the probability of getting stable feature selection.
Using an ensemble strategy is not always beneficial but it can give
better results even if selection technique is less stable.
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8. Conclusions

Recent advancement in high-throughput technologies, radio-
mics, neuroimaging, sensors, etc. produces very high-dimensional
data. With the proliferation of high-dimensional datasets in recent
years, feature selection has received attention of researchers and
data-mining professionals in terms of both performance and com-
putational efficiencies. A feature subset selected by a feature selec-
tion technique is evaluated for relevance towards a task such as
classification or knowledge discovery from high-dimensional fea-
ture space. One important characteristic of feature selection tech-
nique is stability. Stability is the insensitivity of a feature
selection algorithm to a small perturbation in input training data.
Our focus in this review paper is to address the problem of stabil-
ity, its importance, various stability measures used to evaluate
subsets of selected features and solutions to the different source
of instabilities. Subsets of selected features may be generated using
filter-based, wrapper-based or embedded techniques. These fea-
ture selection techniques use different feature selection strategies
such as forward sequential search, backward sequential search and
hill climbing to select most important features. In order to measure
the stability of a feature selection techniques, a similarity measure
is needed to assess the overlap of a pair of feature subsets. The
strength and weakness of all similarity measures are presented.
We summarized the solutions to the different source of instabili-
ties based on feature information Strategy, feature relatedness,
sample weighting, parameter optimization, intensive search
approach, group feature selection and ensemble feature selection.
From the extensive survey we can say that group feature selection
and ensemble feature selection are the most widely used methods
although using an ensemble strategy is not always beneficial but it
can give better result even if selection technique is less stable.
Stable feature selection is very important from theoretical as well
practical perspective. More progressive research need to be devel-
oped to explore this challenging topic. Throughout this study, we
discussed the current researches going on in feature selection tech-
niques stability analysis within the domain of bioinformatics,
image analysis, healthcare, business analytics, networking, etc
and have identified the shortcoming of these works to explore pos-
sible opportunities for future work.
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