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Combinatorial optimization by simulating adiabatic
bifurcations in nonlinear Hamiltonian systems
Hayato Goto*, Kosuke Tatsumura, Alexander R. Dixon

Combinatorial optimization problems are ubiquitous but difficult to solve. Hardware devices for these problems have
recently been developed by various approaches, including quantum computers. Inspired by recently proposed
quantum adiabatic optimization using a nonlinear oscillator network, we propose a new optimization algorithm
simulating adiabatic evolutions of classical nonlinear Hamiltonian systems exhibiting bifurcation phenomena,
which we call simulated bifurcation (SB). SB is based on adiabatic and chaotic (ergodic) evolutions of nonlinear
Hamiltonian systems. SB is also suitable for parallel computing because of its simultaneous updating. Implement-
ing SB with a field-programmable gate array, we demonstrate that the SB machine can obtain good approximate
solutions of an all-to-all connected 2000-node MAX-CUT problem in 0.5 ms, which is about 10 times faster than a
state-of-the-art laser-based machine called a coherent Ising machine. SB will accelerate large-scale combinatorial
optimization harnessing digital computer technologies and also offer a new application of computational and
mathematical physics.
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INTRODUCTION
In social life and industry, one often encounters problems for finding
the best combination among an enormous number of candidates. These
combinatorial optimization problems aremathematically formulated as
minimization ormaximization of certain functions of discrete variables,
which are called objective functions or cost functions. These problems
are notoriously difficult because of combinatorial explosion (1, 2). Thus,
special-purpose hardware devices for these problems are expected to be
useful. In particular, “Ising machines” designed for finding a ground
state of the Ising spin model (3) have recently attracted much attention
because many combinatorial optimization problems can be mapped to
the Ising problem (4), including very-large-scale integrated circuit de-
sign (5), drug design (6), and financial portfoliomanagement (7). These
machines have been developed by various approaches: quantum com-
puters based on quantum annealing (8, 9) or quantum adiabatic opti-
mization (10–12) implemented with superconducting circuits (13, 14),
coherent Isingmachines (CIMs) implemented with laser pulses (15–20),
and Ising machines based on simulated annealing (SA) (1, 21, 22) im-
plemented with digital circuits such as field-programmable gate arrays
(FPGAs) (23–29).

Inspired by recently proposed quantum adiabatic optimization
using a nonlinear oscillator network (30–34), here, we propose a new
heuristic algorithm for the Ising problem. In this algorithm, which we
call simulated bifurcation (SB), we numerically simulate adiabatic evo-
lutions of classical nonlinear Hamiltonian systems exhibiting bifurcation
phenomena (35), where two branches of the bifurcation in each non-
linear oscillator correspond to two states of each Ising spin (30, 34).
[The CIMs also use two branches of a bifurcation for two states of an
Ising spin (15–20), but they are notHamiltonian systems.]Unlike simu-
lations of quantum systems,we can efficiently simulate theHamiltonian
systems (36) using current digital computers. This enables treatment of
large-scale problems with dense connectivity, which are challenging for
near-term quantum computers. Moreover, SB allows one to update
variables simultaneously at each time step. This is in contrast to SA, be-
cause it generally requires one-by-one updating to guarantee convergence.
[Simultaneous updating is allowed only for isolated spins (22, 24).] This
difference between SB and SA implies that the acceleration of SB by
massively parallel processing is easier than that of SA. Exploiting these
advantages, we implement an ultrafast all-to-all connected 2000-spin
Ising machine based on SB with a single FPGA and demonstrate that
ourmachine is about 10 times faster than a state-of-the-art CIM (17, 19).
In addition, we also solve an all-to-all connected 100,000-spin Ising prob-
lem with continuous parameters by SB using a graphics processing unit
(GPU) cluster, which is about 10 times and 1000 times faster than our
best SA and the software of SA provided by (22), respectively. This sug-
gests that SB can accelerate large-scale combinatorial optimizationwith-
out specially designed hardware devices or custom circuits.

While quantum adiabatic optimization is based on the quantum
adiabatic theorem (37, 38), SB is based on adiabatic and chaotic (ergodic)
evolutions of classical nonlinear Hamiltonian systems. We will discuss
this mechanism of SB using the simulation results of a simple example
instead of giving amathematically rigorous proof of the operational prin-
ciple of SB, which is left as an interesting problem for future work.
RESULTS
SB algorithm
The N-spin Ising problem without external magnetic fields is formu-
lated as follows. A dimensionless Ising energy is given by

EIsingðsÞ ¼ � 1
2
∑
N

i¼1
∑
N

j¼1
Ji;jsisj ð1Þ

where si denotes the ith Ising spin, which takes a value of 1 or −1, s =
(s1 s2 ⋯ sN) is the vector representation of a spin configuration, and
Ji,j(= Jj,i) is the coupling coefficient between the ith and jth spins (Ji,i= 0).
The problem is to find a spin configurationminimizing the Ising energy.
This problem is mathematically equivalent to a famous combinatorial
optimization problem named MAX-CUT (5, 17, 18, 39): divide the
nodes of a weighted graph into two groupsmaximizing the total weight
(called “cut value”) of the edges cut by the division. By setting the cou-
pling coefficients as Ji,j = −wi,j (wi,j = wj,i is the weight between the ith
and jth nodes), we can solveMAX-CUTusing Isingmachines (see also
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the Supplementary Materials) (5, 17, 18). Since the total number of
spin configurations is 2N, it is extremely difficult to find exact solutions
for largeN. Unless the topology of the graph has some special structure,
such as two-dimensional lattices, this problem is known to be nonde-
terministic polynomial time (NP)–hard (2, 3). Hence, it is strongly be-
lieved that there exists no efficient exact algorithm for this problem. In
practice, one often uses heuristic algorithms, such as SA, to find ap-
proximate but practically useful solutions as fast as possible. Here, we
propose SB as a new option for these heuristic algorithms. [For obtain-
ing exact solutions of small-size problems, the SA machine called
“Digital Annealer” in (29) may be the fastest so far.]

For the Ising problem, a new kind of quantum adiabatic optimiza-
tion using a network of Kerr-nonlinear parametric oscillators (KPOs)
has recently been proposed (30–34). The quantum mechanical
Hamiltonian in this approach is given by (30, 34)

HqðtÞ ¼ ℏ∑
N

i¼1

K
2
a†2i a2i �

pðtÞ
2

a†2i þa2i
� �þDia

†
i ai

� �
�ℏx0∑

N

i¼1
∑
N

j¼1
Ji;ja

†
i aj

ð2Þ

where ℏ is the reduced Planck constant, a†i and ai are the creation and
annihilation operators, respectively, for the ith oscillator, K is the
positive Kerr coefficient, p(t) is the time-dependent parametric two-
photon pumping amplitude, Di is the positive detuning frequency be-
tween the resonance frequency of the ith oscillator and half the
pumping frequency, and x0 is a positive constant with the dimension
of frequency. The initial state of each KPO is set to the vacuum state,
and the pumping amplitude p(t) is gradually increased from zero to a
sufficiently large value. The constant x0 is set to a sufficiently small value
such that the vacuum state is the ground state of the initial Hamiltonian
(30, 34). Then, each KPO finally becomes a coherent state with a pos-
itive or negative amplitude via a quantum adiabatic bifurcation (30, 34),
and the sign of the final amplitude for the ith KPOprovides the ith Ising
spin of the ground state of the Ising model, which is guaranteed by the
quantum adiabatic theorem (30, 34).

The corresponding classical Hamiltonian system is derived from a
classical approximation where the expectation value of ai is approxi-
mated as a complex amplitude xi + iyi (where i denotes the imaginary
unit) (30, 34). Here, the real and imaginary parts, xi and yi, are a pair of
canonical conjugate variables, such as a position and a momentum, for
the ithKPO.The classicalmechanicalHamiltonian and the equations of
motion for this classical system are given by (30, 34)

Hcðx; y; tÞ ¼ ∑
N

i¼1

K
4

x2i þ y2i
� �2 � pðtÞ

2
x2i � y2i
� �þ Di

2
x2i þ y2i
� �� �

� x0
2
∑
N

i¼1
∑
N

j¼1
Ji;jðxixj þ yiyjÞ ð3Þ

_xi ¼ ∂Hc

∂yi
¼ K x2i þ y2i

� �þ pðtÞ þ Di
� �

yi � x0∑
N

j¼1
Ji;jyj ð4Þ

_yi ¼ � ∂Hc

∂xi
¼ � K x2i þ y2i

� �� pðtÞ þ Di
� �

xi þ x0∑
N

j¼1
Ji;jxj ð5Þ
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where the dots denote differentiation with respect to time t. It was em-
pirically found that this classical system can also find good approximate
solutions with considerably high probability, where the sign of the final
xi provides the ith spin of the solutions (30, 34). This result suggests a
new approach to the Ising problem. Unlike quantum computers, we do
not need to build a real machine described by the above Hamiltonian,
because, instead, we can simulate such a machine efficiently using clas-
sical computers.

However, Eqs. 4 and 5 are not suitable for fast numerical simulation.
By disregarding some terms proportional to the momenta y, which
varies around zero (30, 34), we simplify Eqs. 4 and 5 as follows

HSBðx; y; tÞ ¼ ∑
N

i¼1

D
2
y2i þ Vðx; tÞ ¼ ∑

N

i¼1

D
2
y2i þ

∑
N

i¼1

K
4
x4i þ

D� pðtÞ
2

x2i

� �
� x0

2
∑
N

i¼1
∑
N

j¼1
Ji;jxixj ð6Þ

_xi ¼ ∂HSB

∂yi
¼ Dyi ð7Þ

_yi ¼ � ∂HSB

∂xi
¼ � Kx2i � pðtÞ þ D

� �
xi þ x0∑

N

j¼1
Ji;jxj ð8Þ

where V(x, t) denotes the potential energy, and all the detunings have
been assumed to be the same value D. The resultant classical system is a
network of Duffing oscillators (35, 40) with mass D−1 and coupling
coefficients {x0Ji,j}. [Similar simplification for the CIM simulation
has recently been reported in (41).]

Hereafter, we treat all the parameterswith the dimension of frequency
(correspondingly, also time) as dimensionless quantities because we use
Eqs. 7 and 8 as an algorithm for solving mathematical problems, and
therefore, the physical meanings of the parameters are unimportant.
x and y are also dimensionless by definition.

The SB algorithm is based on Eqs. 7 and 8. Note that the new
Hamiltonian in Eq. 6 is separable with respect to positions andmomenta,
unlike the previous one in Eq. 3. Therefore, Eqs. 7 and 8 can be solved by
the explicit symplectic Euler method (see also Methods) (36) instead of
implicit methods or, e.g., the explicit fourth-order Runge-Kutta method.
The simplicity of the explicit symplectic Eulermethod is crucial for hard-
wiring of the SB algorithm with custom circuits, such as FPGAs. Its
stability is also important, because this allows one to set the time step
to a large value, which results in high-speed simulation. [The symplectic
Euler method is first-order accurate. Higher-order explicit symplectic
methods, such as the Störmer-Verlet method (36), can also be used,
but this is not effective not only for the speed and stability of the present
simulation but also for the solution accuracy for the Ising problem.
Hence, we adopt the simplest first-order method. See Methods for
details.]

The SB algorithm is as follows. All the variables, x and y, are initially
set around zero.Gradually increasing p(t) fromzero,we solve Eqs. 7 and
8 numerically by the explicit symplectic Euler method. (For further
speedup, we modify the method from its standard form. See Methods
for details.) The sign of the final xi provides the ith spin of an approx-
imate solution of the Ising problem.
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SB has further algorithmic advantages: Eqs. 7 and 8 have only one
product-sum operation with respect to the coupling matrix J, which is
the most computation-intensive part in this algorithm, unlike Eqs. 4
and 5 including two such product-sum operations; we can update the
variables simultaneously, and therefore, we can fully exploit massively
parallel processing for accelerating SB; and SB includes only addition
and multiplication, and no probabilistic processes, and therefore can
be easily hardwired, e.g., with FPGAs.

Mechanism of SB
Themechanism of SB is qualitatively explained as follows.When p(t) is
gradually increased from zero to a sufficiently large value pf, each oscil-
lator exhibits a bifurcationwith two stable branches whose positions are
approximately given bysi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpf � DÞ=Kp
(si=±1) (34). Correspondingly,

the potential energy finally has 2N minima corresponding to 2N spin
configurations, which are approximately given by

V s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpf � DÞ=K

q
; t

	 

¼ �Nðpf � DÞ2

4K
� x0

2

pf � D

K
∑
N

i¼1
∑
N

j¼1
Ji;jsisj ð9Þ

Note that the first term is independent of s, and the second term is pro-
portional to the Ising energy regarding s as a spin configuration. In the
adiabatic evolution with slowly varying p(t), the state will follow one of
the potential energy minima near to the present state. Assuming that
Goto et al., Sci. Adv. 2019;5 : eaav2372 19 April 2019
minima with relatively low final energies appear earlier and are lower
during the adiabatic evolution than those with relatively high final en-
ergies, we expect that the state will arrive at aminimumwith a relatively
low final energy. Thus, wewill find a spin configurationwith a low Ising
energy as an approximate solution.

Instead of showing the general validity of the above qualitative de-
scription, here, we show the situation of a simple example: the two-spin
Ising model with ferromagnetic coupling (J1,2 = J2,1 = 1), the ground
states of which are (up, up) and (down, down). This will give us an
intuitive understanding of SB, which is enough to use SB as a heuristic
algorithm.

Figure 1 (A andB) shows the simulation results for this problemwith
a linearly increased pumping amplitude p(t) = ept. As shown in this fig-
ure, after two bifurcations, the potential energy finally has four minima
corresponding to the four configurations of the two-spin Ising model.

Before the first bifurcation, the potential energy has a single min-
imum at the origin, around which the trajectory circulates, as shown
in the top panel of Fig. 1B. After the first bifurcation, two stable fixed
points (potential energy minima) corresponding to the ground states,
(up, up) and (down, down), appear earlier than the other two minima
corresponding to (up, down) and (down, up). The state adiabatically
follows one of the twominima that appear earlier. Thus, SB successfully
finds a ground state (down, down).

This adiabatic evolution is explained as follows. First, the total energy
E(t) and the potential energies at theminima,V±,±(t) (+ and− correspond
 on January 23, 2020
advances.sciencem
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Fig. 1. Dynamics in SBwith twooscillators for the two-spin Ising problemwith ferromagnetic coupling. (A) Time-dependent pumping amplitude, p(t) = ept (ep = 0.01),
in the simulation (top) and time evolutions of x and y (oscillating thin lines in middle and bottom panels). Bold lines represent x of stable fixed points (potential energy
minima): x1 = x2 = 0 (p ≤ D − x0 = 0.4), x1 ¼ x2 ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� Dþ x0Þ=K
p

(p > D − x0 = 0.4), and x1 ¼ �x2 ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� D � x0Þ=K

p
(p > D + x0 = 0.6). (B) Trajectories (circulating

lines in white) in three time intervals, (0, 40) (top), (40, 60) (middle), and (60, 200) (bottom) and potential energy V(x, t) measured from the total energy E(t) = H(x(t), y(t), t) at the
final times of the intervals. The boundaries of the time intervals are indicated in (A) by the dotted (t = 40) and dashed (t = 60) vertical lines. The loops (magenta) show the
boundaries of the energetically allowable regions defined by V(x, t) − E(t) ≤ 0 at the final times. Other parameters are set as K = 1, D = 0.5, x0 = 0.1, x1(0) = x2(0) = y1(0) = 0, and
y2(0) = 0.1. (C and D) Similar results for p(t) given in the top panel in (C) are shown. The boundaries of the time intervals are indicated in (C) by the dotted (t = 100) and
dashed (t = 131.2) vertical lines.
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to up and down, respectively), are formulated from their time deriva-
tives as

EðtÞ ¼ E0 �
ep
2
∫
t

0jxðt′Þj2dt′ ð10Þ

V±;±ðtÞ ¼ � ep
2
∫
t

0jX±;±ðt′Þj2dt′ ð11Þ

where E0 is the initial total energy, which is assumed to be small, and
X±,±(t) denote the positions of theminima. Before the corresponding
bifurcation, X±,±(t) are defined as zero. Note that the total energy
monotonically decreases because of the second term in Eq. 10 describ-
ing the negative work done by the time-dependent pumping term.
After the first bifurcation, X+,+(t) and X−,−(t) leave the origin, and x(t)
starts to circulate around them, instead of the origin. This leads to the
increase of |x(t)| and therefore the further decrease of the total energy.
As a result, the energetically allowable region defined byV(x, t)− E(t)≤
0 (inside the loops in Fig. 1B) separates into two parts, as shown in the
middle panel of Fig. 1B. In the present simulation, x(t) is confined in
the allowable region aroundX−,−(t). After that, x(t) circulates around
X−,−(t), which leads to ∫|x(t)|2dt ≈ ∫|X−,−(t)|

2 dt. From this and Eqs.
10 and 11, the difference between E(t) and V−,−(t) is kept constant at a
small value. Thus, x(t) is kept in the allowable region around X−,−(t), as
shown in the bottom panel of Fig. 1B. In summary, SB finds a ground
state by adiabatically following one of the stable fixed points (potential
energy minima) corresponding to the ground states that appear at
the first bifurcation point.

The above mechanism of SB suggests that solutions obtained by SB
are determined at the first bifurcation point. Since x(t) at the first bi-
furcation point is given by the maximum-eigenvalue eigenvector of
the coupling matrix J (see the Supplementary Materials), SB may pro-
vide the signs of the elements of the eigenvector as an approximate so-
lution, which is actually an approximate solution obtained by a
continuous reductionmethod (30, 34). As shown in the next subsection,
however, SB can provide much better solutions than this. This fact
implies that there may exist another mechanism of SB; that is, SB
may continue to search better solutions after the first bifurcation.

To investigate this new mechanism of SB, we also did another
simulationwhere p(t) is given in the top panel of Fig. 1C. The results are
shown in Fig. 1 (C and D). In this case, the initial value of p(t) is higher
than the two bifurcation points, and therefore, there are four potential
energy minima even at the initial time. While p(t) is constant, x(t)
moves in the energetically allowable region including the four mini-
ma, as shown in the top panel of Fig. 1D. After that, the allowable region
separates into four parts, as shown in themiddle panel of Fig. 1D. Then,
x(t) is confined in one of the four regions. Eventually, SB find a ground
state (up, up) successfully.

Since x(t) also moves around the other potential energy minima, as
shown in the top and middle panels of Fig. 1D, the failure probability
may be finite. To evaluate the success probability, we repeat this
simulation 104 times with different initial conditions, where x1(0) =
x2(0) = 0 and y1(0) and y2(0) are set randomly from the interval
(−0.1, 0.1). As a result, we obtain ground states with a probability
of about 0.83. This result indicates that lower energy states (better solu-
tions) are obtainedwith higher probabilities even in the initial condition
where the energetically allowable region includes multiple potential
energy minima.
Goto et al., Sci. Adv. 2019;5 : eaav2372 19 April 2019
This interesting result can be explained by assuming the ergodicity
of this nonlinear Hamiltonian system, implying that a trajectory will
eventually visit all states in the phase-space allowable region (36). This
is suggested by the top panel of Fig. 1D, where x(t) moves around two
low minima more frequently than two high minima. From the ergo-
dicity, the success probability may be proportional to the phase-
space volume of the allowable region satisfying x1x2 > 0. The success
probability numerically estimated by the phase-space volume for the
middle panel of Fig. 1D is about 0.841, which is remarkably close to
the actual success probability of 0.83. This numerical fact supports
the mechanism based on the ergodicity. In general, the ergodicity
suggests that x(t) moves around low potential energy minima in longer
time thanhighminima,which results in lower Ising energies. In the next
subsection, we provide additional numerical evidence for this mecha-
nism; that is, SB can find much better solutions for a 2000-spin Ising
problem than that obtained at the first bifurcation. Thus, we conclude
that SB finds lower minima among many minima harnessing the ergo-
dicity. [Very recently, a new approach to the Ising problem using a clas-
sical Hamiltonian system with “classical spins” mimicking quantum
annealing has been proposed (42), where a fixed point is tracked by
the technique called shortcut to adiabaticity. Although this approach
uses classical Hamiltonian dynamics as well, it is quite different from
SB, because it will not exploit the ergodic search but just track a fixed
point. In addition, it has been unclear so far whether it can achieve a
high-speed computation with its complicated equations.]

Solving an all-to-all connected 2000-node MAX-CUT
problem by a single-FPGA SB machine
From the advantages and properties of SB, we expect that SB will be
useful for approximately solving large-scale Ising or MAX-CUT prob-
lems with dense connectivity as fast as possible. To check this expec-
tation, we compare our SBmachinewith a state-of-the-art CIM (17, 19),
because this machine has achieved outstanding performance for these
problems. For this comparison, we solved an all-to-all connected 2000-
node MAX-CUT problem named K2000, which was solved by the CIM
(17, 19).

We implemented an SB-based 2000-spin Isingmachinewith a single

FPGA. The product-sum operation, ∑
N

j¼1
Ji;jxj, in Eq. 8, which is the most

computation-intensive part in SB, is performed efficiently by massively
parallel processing. Ji,jxj terms of up to 8192 are processed at a single
clock, which is about four times more than the total spins. See the Sup-
plementary Materials for details.

One of the main results in (17) is that the CIM reached a target
energy given by the Goemans-Williamson semidefinite programming
(GW-SDP) algorithm (17, 38) in about 70 ms in the best case among
100 trials, which is about 50 times shorter than that by the SA highly
tuned in (17). [The SA in (17, 19) is very fast by putting all the elements
of the coupling matrix J on a cache of a single core. Thus, parallel com-
puting withmultiple cores cannot accelerate the SA because of commu-
nication overheads.] In comparison with this, our single-FPGA SB
machine reaches theGW-SDP value in only 58 ms even in theworst case
among 100 trials, as shown in Fig. 2A.

Anothermain result in (17) is that the CIM took only 5ms to obtain
as good solutions (large cut values) as the highly tuned SA obtained in
50 ms, where the cut value of the MAX-CUT problem is given by

� EIsing
2 � 1

4 ∑
N

i¼1
∑
N

j¼1
Ji;j with Ising parameters (see the Supplementary

Materials). Figure 2B shows that our SB machine takes only 0.5 ms to
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obtain better solutions on average than both the CIM in 5 ms and the
SA in 50 ms.

In Fig. 2A, we also show the energy obtained by the Hopfield neural
network (HNN) of two-state neurons (19, 43). The HNN is the most
naïve local search algorithm, and therefore, more sophisticated algo-
rithms should outperform the HNN. (The HNN is equivalent to SA
at zero temperature; see the Supplementary Materials.) Note that the
HNN energy is lower than the GW-SDP energy. Our SB machine
reaches theHNNenergy about 13 times faster than theCIMon average.
From these results, we conclude that our single-FPGA SB machine is
about 10 times faster than the CIM developed in (17).

Asmentioned in the last subsection, at the first bifurcation point, SB
may find an approximate solution determined by the maximum-
eigenvalue eigenvector of the coupling matrix J (30, 34). In the case of
K2000, this approximate solution is EIsing = −55724 or the cut value of
27,342. This ismuchworse than those actually obtained by SB, as shown
in Fig. 2. This fact supports themechanismof SBbased on the ergodicity
discussed in the last subsection.

Solving an all-to-all connected 100,000-node MAX-CUT
problem by a GPU-cluster SB machine
We have further solved an all-to-all connected 100,000-node MAX-
CUT problem with continuous weights set randomly from the interval
[−1, 1], which is named M100000. [See the Supplementary Materials
for its definition with a pseudo-random number generator in (44).] Note
that in M100000, there are about 5 billion edges, the data size of which is
too large for FPGAs. We instead use two large computational systems
Goto et al., Sci. Adv. 2019;5 : eaav2372 19 April 2019
and compare the performance from each. System 1 is a GPU cluster
using eight GPUs communicating with one another via a fast link.
System 2 is a PC cluster composed of multiple nodes with two 14-core
processors each communicating with one another via a fast link.We also
solved M100000 by the HNN and the SA developed by us based on (22).
Our SA is remarkably fast, e.g., about 100 times faster than the software
provided by (22). See the Supplementary Materials for details.

The comparison of computation times for SB and SA is shown in
Fig. 3A. The fastest implementation is the GPU cluster for SB and the
50-core PC cluster for SA. This difference comes from the fact that the
massively parallel processing of the GPU cluster is effective for SB, but
not for SA, due to the lack of parallelizability of the spin update and
resultant large communication overheads. Figure 3B shows the com-
putation times of SB and SA in their fastest implementations. The
dotted lines roughly give the envelopes of the time-evolution curves.
This means that the dotted lines indicate the best cases with respect
to Nstep and Nsweep. From this comparison at the same Ising energies
below the HNN value, it turns out that the GPU-cluster SB machine
is about 10 times faster than our fastest SA or 1000 times faster than
the software provided by (22). This demonstrates that SB allows one
to accelerate large-scale combinatorial optimization without specially
designed hardware devices or custom circuits.
DISCUSSION
We have proposed a new heuristic algorithm for the Ising problem,
which we call SB, inspired by quantum adiabatic optimization using a
0

10

20

30

40
0

10

20

30

40
0

10

20

30

40

−70,000

−60,000

−50,000

−40,000

−30,000

−20,000

−10,000

0

Ave. of HNN GW-SDP
Best Ave. Worst Best Ave. Worst
(ms) (ms) (ms) (ms) (ms) (ms)

SB 0.047 0.061 0.074 0.040 0.047 0.058
CIM 0.155 0.769 N/A 0.071 0.264 1.16
SA 2.64 6.80 N/A 2.10 3.20 7.15

Is
in

g 
en

er
gy

BA

C
ou

nt
s

C
ou

nt
s

C
ou

nt
s

Computation time (ms)
10−3 10−2 10−1 1 10

32,000 33,000
Cut value

SB CIM SA SB
0.5 ms

HNN

GW-SDP

CIM
5 ms

SA
50 ms

32,768

32,459

32,314

Fig. 2. Performanceof SBmachine implementedwithanFPGA forK2000. (A) Time evolutions of Ising energies. (The computation times do not include the loading of data
and the output of the results; see the Supplementary Materials.) Constants in SB are set as K = D = 1 and x0 ¼ 0:7D

s
ffiffiffi
N

p (s = 1 is the SD of the elements of J.) p(t) is linearly
increased from 0 to 1, while the number of time steps is increased from 1 to Nstep. Bold lines: 100-trial average energies of SB withNstep = 40 (left), CIM from (17, 19) (middle),
and SA from (19) (right). [The CIM data are the 26-trial average eliminating 74 trials because of the instability of optical parametric oscillators (17, 19).] Dashed thin and
dotted thin lines sandwiching the bold lines: lower (best case) and upper (worst case) envelopes of the 100 traces. Dotted thin horizontal line: GW-SDP (17). Dashed thin
horizontal line: 100-trial average energy of HNN after convergence at a local minimum. Table: computation times to reach the HNN and GW-SDP energies. N/A, not
applicable. (B) Histograms of 100 cut values obtained by SB with Nstep = 186 in 0.5 ms (top), CIM in 5 ms from (17) (middle), and SA in 50 ms from (17) (bottom). The
numbers in the panels are the average cut values of the 100 trials.
5 of 8

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on January 23, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

nonlinear oscillator network. Exploiting the advantages of SB, such as
simultaneous updating and simple calculations, we have realized an
ultrafast all-to-all connected 2000-spin Isingmachine based on SBusing
a single FPGA, which is about 10 times faster than a state-of-the-art
CIM. We have also solved an all-to-all connected 100,000-node
MAX-CUT problem with continuous weights using a GPU-cluster
SB machine, which is about 10 times faster than our fastest SA.
We found that the computation speed of the GPU-cluster SB machine
is limited by the memory bandwidth of each GPU (see the Supplemen-
tary Materials). This indicates that hardware devices with broader
memory bandwidths specially designed for SB, such as application-
specific integrated circuits or multi-FPGA systems, will substantially
improve the performance. Themechanism of SB is based on adiabatic
and chaotic (ergodic) evolutions of the nonlinear Hamiltonian sys-
tem. We have discussed the mechanism using simulation results of a
simple model. The mechanism of SB seems to be related to adiabatic
invariants of classical integrable systems (36, 40, 45, 46) and also er-
godic adiabatic invariants of classical nonintegrable systems (47–49).
The mathematically rigorous treatment of the mechanism using these
concepts is left for futurework.Another interesting direction of research
is to extend SB to thermal states at finite temperature, e.g., using the
Nosé-Hoover method (36), which will relate SB to nonequilibrium sta-
tistical mechanics (50).
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METHODS
Modified explicit symplectic Euler method
The symplectic method (36) is a stable numerical method for solving
the Hamiltonian equations of motion. Hereafter, the flow map by a
HamiltonianHwith time step Dt is denoted byF(Dt,H). Since the flow
map by the kinetic energy alone F(Dt, H − V) or the potential energy
alone F(Dt, V) is obviously symplectic, their composition F(Dt, V) ∘
F(Dt, H − V) is also symplectic (36). Since the present Hamiltonian is
separable with respect to x and y, we obtained the explicit symplectic
Euler method for the present Hamiltonian

xiðtnþ1Þ ¼ xiðtnÞ þ DyiðtnÞDt ð12Þ

yiðtnþ1Þ ¼ yiðtnÞ

� Kx3i ðtnþ1Þ þ ðD� pÞxiðtnþ1Þ � x0∑
N

j¼1
Ji;jxjðtnþ1Þ

" #
Dt

ð13Þ
where tn=Dtn are the nth discretized time and p= p(tn + 1). The point of
this method is that the momenta are updated using the updated
positions. This method is not only simple but also stable for consider-
ably large Dt. Thus, we can solve the Hamiltonian equations fast using a
large Dt.

For realizing further speedup,wemodified thismethod as follows. In

the SB algorithm, the product-sum operation, ∑
N

j¼1
Ji;jxj , is the most

computation-intensive part. To mitigate this computation, we split
the Hamiltonian asHSB ¼ M HSB�HJ

M þHJ, whereM is an integer larger

than 2 and HJ ¼ � x0
2 ∑

N

i¼1
∑
N

j¼1
Ji;jxixj. Since the flow maps F(Dt, (HSB −

HJ)/M) = F(Dt/M, HSB − HJ) and F(Dt, HJ) are obviously symplectic,
their composition is also symplectic. Thus, we obtained the modified
explicit symplectic Euler method for SB

xðmþ1Þ
i ¼ xðmÞ

i þ DyðmÞ
i dt ð14Þ

yðmþ1Þ
i ¼ yðmÞ

i � Kxðmþ1Þ3
i þ ðD� pÞxðmþ1Þ

i

h i
dt ð15Þ

xiðtnþ1Þ ¼ xðMÞ
i ð16Þ

yiðtnþ1Þ ¼ yðMÞ
i þ x0∑

N

j¼1
Ji;jx

ðMÞ
j Dt ð17Þ

where dt = Dt/M,m = 0, …, M − 1,xð0Þi ¼ xiðtnÞ,yð0Þi ¼ yiðtnÞ, and p =
p(tn+1), disregarding its detailed time dependence because p(t) varies
slowly. Note that the flow map F(Dt, HSB − HJ), which includes non-
linear terms and therefore induces instability, is replaced by theM-time
repetition ofF(dt,HSB−HJ) with smaller time step dt=Dt/M. Thus, this
method is stable compared with the original one. We found that the
original and modified methods are stable when Dt ≤ 0.5 and Dt ≤
1 (for largeM), respectively, where K = D = 1 and x0 ¼ 0:7D

s
ffiffiffi
N

p , and p(t) is
increased linearly from 0 to 1, as in the present simulations. Thus, using
themodifiedmethod, we can setDt to a value larger by a factor of 2 than
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s
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3

p
is the SD of the elements of J.) p(t) is linearly

increased from 0 to 1, while the number of time steps is increased from 1 to Nstep. In
the SA, the annealing speed is controlled by the total number of “sweeps” Nsweep,
and the inverse temperature is increased linearly from 0 to 0.05. Full and empty
circles: SB and SA, respectively, using a PC cluster, the number of cores of which
is given by the horizontal axis (each node of the PC cluster uses 1 core or 25 cores).
Dotted and dashed lines: SB and SA, respectively, using a GPU cluster with eight
GPUs. (B) Time evolutions of Ising energies (thin lines). Full and empty circles
connected by dotted lines: final values of SB and SA, respectively, with different
Nstep and Nsweep (both are 10, 20, 50, 100, 200, 500, and 1000 from left). Dashed
horizontal line: 10-trial average of HNN after convergence to a local minimum.
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the originalmethod, and consequently, a speedup by a factor of 2 can be
achieved. In the present simulations, we set Dt = 0.9 andM = 2 in Fig. 2
and Dt = 0.9 andM = 5 in Fig. 3.

The second-order symplectic method called the Störmer-Verlet
method is given by the flow map F(Dt/2, HSB − V) ∘ F(Dt, V) ∘ F(Dt/2,
HSB − V) (36). Because of F(Dt, V), the stability of this method is
equivalent to the explicit symplectic Euler method. We found that this
method is stable forM100000 when Dt≤ 0.5. Thus, this method does not
contribute to a speedup. We also found that the second-order accuracy
for the Hamiltonian equations does not contribute to the solution ac-
curacy for the Ising problem. This may be because we need only the
signs of the positions, which will be robust against numerical errors.
Therefore, we adopted the above modified explicit symplectic Euler
method.
http://advan
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