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FREL: A Stable Feature Selection Algorithm
Yun Li, Member, IEEE, Jennie Si, Fellow, IEEE, Guojing Zhou, Shasha Huang, and Songcan Chen

Abstract— Two factors characterize a good feature selection
algorithm: its accuracy and stability. This paper aims at intro-
ducing a new approach to stable feature selection algorithms.
The innovation of this paper centers on a class of stable feature
selection algorithms called feature weighting as regularized
energy-based learning (FREL). Stability properties of FREL
using L1 or L2 regularization are investigated. In addition,
as a commonly adopted implementation strategy for enhanced
stability, an ensemble FREL is proposed. A stability bound for
the ensemble FREL is also presented. Our experiments using
open source real microarray data, which are challenging high
dimensionality small sample size problems demonstrate that our
proposed ensemble FREL is not only stable but also achieves
better or comparable accuracy than some other popular stable
feature weighting methods.

Index Terms— Energy-based learning, ensemble, feature
selection, feature weighting, uniform weighting stability.

I. INTRODUCTION

FEATURE selection has been an active research area in
machine learning and data mining for decades. It is an

important and frequently used technique for data dimension
reduction by removing irrelevant and redundant information
from a data set. It is also a knowledge discovery tool for
providing insights on the problem through interpretations of
the most relevant features [1]. Discussions on feature selec-
tion usually center on two technical aspects: search strategy
and evaluation criteria. Algorithms designed with different
strategies broadly fall into three categories: filter, wrapper,
and hybrid or embedded models [2]. On the other hand,
if the categorization is based on output characteristics, fea-
ture selection algorithms can be divided into either feature
weighting/ranking algorithms or subset selection algorithms.
In this paper, we focus on feature weighting. A comprehensive
survey of existing feature selection techniques and a general
framework for their unification can be found in [1]–[3].

In addition to classification accuracy, another important
measure is stability when evaluating the quality of a feature
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selection algorithm. Here, stability means the insensitivity of
the result of a feature selection algorithm to variations in
the training data set [4]. This issue is particularly important
for some applications where feature selection is used as a
knowledge discovery tool for identifying characteristic mark-
ers to explain the observed phenomena. A feature selection
algorithm without stability constraint usually results in signif-
icantly different feature subsets due to variations in the training
data. Even though most of these feature subsets are as good
as they can be in terms of classification accuracy, unstable
feature selection results can shake the confidence of domain
experts when experimentally validating the selected features to
interpret important discoveries [5]. For instance, in analyzing
cancer biomarkers, such as leukemia, the available data sets
usually are high dimensional yet with small sample size.
Among the thousands of genetic expression levels, a critical
subset is to be discovered that links to two leukemia labels.
It is therefore necessary that the selected predictive genes
are common to variations of training samples. Otherwise, the
results will lead to less confident diagnosis. In consideration of
the importance of stability in applications, several stable fea-
ture selection algorithms have been proposed. The ensemble
methods [4], [6]–[8], sample weighting [9], [10], and feature
grouping [5], [11] are a few examples. A comprehensive
survey of earlier work can be found in [12]. Those existing
stable feature selection algorithms make use of empirical
criteria for stability measurements, and they fell short of
explicitly providing a stability analysis. The pressing need for
an analytical examination of stable feature selection algorithms
beyond the simple empirical approach is thus evident.

In this paper, guided by energy-based learning [13], a new
algorithm framework for feature weighting as regularized
energy-based learning (FREL) is proposed. Stability of the
proposed FREL algorithms under an L1 or L2 regularizer is
examined. In addition, an ensemble FREL is also introduced
and analyzed for its stability. The proposed FREL is then
applied to open source real microarray data to demonstrate its
effectiveness for both stability and accuracy in high dimen-
sionality small sample size (HDSSS) application problems.

This paper is organized as follows. The framework of
FREL and ensemble FREL are introduced in Section II.
Section III analyzes the stability of feature weighting with
an L1 or L2 regularizer. In addition, the stability analysis
of ensemble FREL is presented. The experimental results on
microarray data are shown in Section IV. This paper concludes
in Section V.

II. ENERGY-BASED LEARNING FOR FEATURE WEIGHTING

Energy-based learning [13] provides a unified framework
for many probabilistic and nonprobabilistic approaches to
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learning for prediction, classification, decision-making, sample
ranking, detection, and conditional density estimation. In this
paper, we consider an energy-based learning framework for
the design of feature weighting algorithms. Specifically, we
will focus on developing FREL. An ensemble FREL will also
be discussed. In addition to these feature weighting algorithms
as well as the implementations of these algorithms, this paper
provides stability analysis for these algorithms.

A. Energy-Based Learning

Consider an inference model between input variable x and
inferred variable y. The goodness of fit of each possible
model configuration relating x to y can be measured by an
energy function E(y, x). The value of this energy function
can be viewed as the degree of compatibility of a given
configuration between x and y. Conventionally, small energy
values correspond to highly compatible configurations, while
large energy values correspond to highly incompatible config-
urations. When applying such an inference model, for a given
input x , the model produces the most compatible answer y�

such that y� = argminy∈Y E(y, x). The energy-based learning
entails finding an energy function that produces the best y for
a given x . To search for the best energy function, a family of
parameterized energy functions of the form F = {E(w, y, x) :
w ∈ W } is proposed, where w is the model parameter [13].

B. Regularized Energy-Based Learning

To train an energy-based model, we are given a training
set D containing n samples, D = {X,Y } = {xi , yi }n

i=1,
where xi is the i th training input and yi is the corresponding
desired answer such as a label, but not limited to that. Each
sample input is represented by a d-dimensional vector, i.e.,
xi ∈ R

d . To find the best energy function in the family
F, we need to assess the quality of an energy function,
only with information from the training set D and possible
prior knowledge about the task where data were collected.
This quality measure is a loss functional, i.e., a function of
functions, denoted by L D(w). We call it the objective loss
function. Accordingly, the learning problem becomes finding
the w′ that minimizes the objective loss

w′ = argminw∈W L D(w). (1)

Usually, an objective loss function based on data set D is
defined as follows:

L D(w) = 1

n

n∑

i=1

L(w, xi )+ γR(w). (2)

On the right-hand side of (2), L(w, xi ) is the per-sample
loss function. Then, the first term (1/n)

∑n
i=1 L(w, xi ) is

the sample-averaged loss function, which is taken over n
respective per-sample loss function, and is denoted by JD(w)
for simplicity

JD(w) = 1

n

n∑

i=1

L(w, xi ). (3)

The R(w) in (2) is a regularizing term that can be used
to embed prior knowledge about which energy functions are

preferable to others. In this paper, the classical L1 and L2
regularizer are respectively examined. Parameter γ in (2) is a
cost balancing factor.

Based on the discussion of energy-based learning above, it is
evident that the per-sample loss function should be designed
in such a way that it assigns a low loss to well-behaved energy
functions, i.e., the energy functions that give the lowest energy
to the correct answers and higher energy to all other including
incorrect answers. Conversely, the energy functions that do
not assign the lowest energy to the correct answers would
have a high loss [13]. The generalized margin loss functions,
for example, meet those conditions [13]. It is thus used as
the per-sample loss function L(w, xi ). Before introducing the
generalized margin loss function, the following definition is
needed.

Definition 1: Let y be a discrete variable. The most offending
incorrect answer is the one that has the lowest energy among
all the answers that are incorrect

yi = argminy∈Y,y �=yi
E(w, y, xi ). (4)

Then, a generalized margin loss function for per-sample loss
can be described as follows:

L(w, xi ) = Qθ (E(w, yi , xi ), E(w, yi , xi )) (5)

where E(w, yi , xi ), which is consequently denoted as Ei for
notation simplification, is the energy of a correct answer
for xi ; E(w, yi , xi ), denoted by Ei , is the energy of the most
offending incorrect answer for xi ; θ is a positive parameter
called the margin, and it is the energy gap between the
incorrect answers and the correct ones. As discussed in [13],
the function Qθ (Ei , Ei ) → R is assumed to be convex, which
can be easily satisfied. Moreover, consider the energy space
defined by Ei ×Ei , and let ∂Qθ /∂Ei and ∂Qθ /∂Ei denote the
gradient of Qθ along Ei and Ei , respectively. Then, in general,
it holds true that ∂Qθ /∂Ei−∂Qθ /∂Ei > 0 in the region where
Ei + θ > Ei in the energy space. This means wherever Ei is
smaller than Ei plus θ , the gradient along Ei is larger than
the gradient along Ei . Then, Qθ pushes down the value of
Ei and pulls up the value of Ei . This causes the Qθ loss
surface to be slanted toward low values of Ei and high values
of Ei [13]. This meets the specification in Section II-A that
the energy value between xi and its compatible answer yi be
small, while the energy value between xi and its incompatible
answer yi is large.

Remark 1: There are many possible realizations of Qθ

in (5) such as the hinge, log, square-square, and square-
exponential losses [13]. For example, when the log loss with
infinite margin and the square-square loss with margin θ are
selected, the corresponding per-sample loss functions in (5)
are as follows:
L(w, xi ) = log(1 + exp(E(w, yi , xi )− E(w, yi , xi ))) (6)

L(w, xi ) = E(w, yi , xi )
2 + (max(0, θ − E(w, yi , xi )))

2. (7)

If the parameter w in energy function E is defined as
the feature weight vector, then a feature weighting algorithm
simply finds the w′ that minimizes the objective loss func-
tion defined in (2). In Section IV-D, the log and square-
square losses are chosen as two representative per-sample loss
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functions to construct the objective loss functions and to derive
specific feature weighting algorithms. However, the theoretical
results obtained in this paper are not limited to log and square-
square losses in the feature weighting stability analysis.

C. Feature Weighting as Regularized Energy-Based Learning

In short, for a feature weighting problem to be considered
an energy-based learning problem, first, the parameter w in
the energy function should be relevant to the feature weight
vectors. Second, a generalized margin loss function should be
selected as per-sample loss function L(w, xi ) as shown in (2)
to construct the objective loss function L D(w). After that,
the correct answer and the most offending incorrect answer
for a sample should be explicitly identified. To summarize,
the following issues are critical to the feature weighting
algorithm design: 1) using appropriate criteria to determine
the correct answer and the most offending incorrect answer
for each sample and 2) properly designing the structure of an
energy function E , which is needed in the per-sample loss
function of (5) and consequently (2). By properly addressing
these issues, learning leads to finding the appropriate energy
function such that the per-sample loss function of (5) will be
pushed down for correct answers and pulled up for incorrect
answers while maintaining an energy gap or margin.

To address the first issue of developing appropriate cri-
teria to determine the correct answer and the most offend-
ing incorrect answer for each sample, we resort to the
nearest neighbor (NN) classification scheme. Note that, the
NN classifier is a nonlinear mapping between input patterns
and class labels. It is a simple algorithm but has received
considerable attention again recently since they have been
demonstrated highly efficient in some state-of-the-art real-
world applications [14], [15]. Additionally, the NN classifier
can be viewed as an energy-based learning where the energy
function is a sample distance measure. Consider a sample
xi , its NN in the same class denoted by NH(xi ) can be
determined easily so long as a distance measure is defined.
Also, the NH(xi ) can be considered as the nearest correct
answer. Similarly, the NN with a different label denoted by
NM(xi ), can be considered as the most offending incorrect
answer based on Definition 1.

Once the correct and the most offending incorrect answers
are identified as NH(xi ) and NM(xi ), respectively, parame-
terized energy functions E(w, yi , xi ) and E(w, yi , xi ) needed
in the generalized margin loss function of (5) can be defined
as weighted Manhattan distances as shown in the following:

E(w, yi , xi ) = E(w, NH(xi ), xi ) = wT |xi − NH(xi )| (8)

E(w, yi , xi ) = E(w, NM(xi ), xi ) = wT |xi − NM(xi )| (9)

where | · | denotes an element-wise absolute value operator
on each component of the argument vector, which is of
dimension d in the cases of (8) and (9), T denotes transpose,
and w is the parameter associated with the energy function.
As discussed above, the solution to the general energy-based
learning problem with energy function shown in (2) becomes
the feature weighting vector w = {w(1),w(2), . . . , w(d)} in
our current problem setting.

Algorithm 1 FREL Algorithm

Step 1. Input training data set D ={xi , yi }n
i=1, xi ∈R

d ,
margin θ in (5) and regularization parameter
γ in (2).

Step 2. Initialize w = (1, 1, . . . , 1) ∈ R
d .

Step 3. For i = 1, 2, . . . , n
(a) Given xi , find the NH(xi ) and NM(xi ) based

on NN algorithm.
(b) From (8) and (9), calculate

E(w, NH(xi ), xi ), E(w, NM(xi ), xi )
and obtain the generalized margin loss Qθ ,
i.e., L(w, xi ), in (5).

(c) � = 1
n
∂L(w,xi )
∂w + γ ∂R(w)∂w .

(d) w = w − �
||�||2 .

Step 4. Output the feature weighting vector w′ = w.

The optimal feature weight w′ can then be found by many
different optimization approaches. As an example, the gradient
descent algorithm is used to illustrate the minimization of the
objective loss function (2) next. With the above discussions in
place, we are in a position to summarize our proposed FREL
as Algorithm 1.

Once the parameterized energy functions E in (8) and (9)
are defined, respectively, we can employ a generalized margin
loss function of the form (5) as the per-sample loss function
L(w, xi ). As discussed, many different generalized margin
loss functions mentioned in Remark 1 such as the hinge and
the log losses can be integrated with different regularizers,
(e.g., L1 or L2 regularizer) to make up different objective
loss functions L D(w) in (2). Therefore, a family of feature
weighting algorithms could consequently be derived. Note that
the local learning-based feature weighting algorithm described
in [16] is a special case of FREL when the log loss and L1
regularizer are adopted. Moreover, if the log loss is combined
with L2 regularizer, which is used to enhance diversity among
base feature selectors in ensemble feature selection, the algo-
rithm in [7] can be obtained and it is another special case of
FREL. Note, however, this is the first time that the algorithms,
including those in [7] and [16], are analyzed from an energy-
based learning perspective under the proposed framework of
FREL, and their respective stability properties are provided.

It also should be pointed out that for the purposes of this
paper, we use Manhattan distance to determine the NNs and
to define energy functions in (8) and (9). Nonetheless, other
standard distance measures such as Euclidean distance are also
eligible candidates without creating any problem in obtaining
the results in this paper.

To summarize, resorting to NN classification, the feature
weighting problem is described as regularized energy-based
learning and the feature weighting vector corresponds to the
parameter w in the objective loss function defined in (2).
The generalized margin loss function Qθ , which is convex,
in (5) is adopted as per-sample loss function L(w, xi ) in
energy-based learning. For the regularizer in the objective
loss function (2), the classical L1 and L2 regularizers are
considered in this paper.
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Algorithm 2 Ensemble FREL

Step 1. Input training data set D ={xi , yi }n
i=1, xi ∈R

d ,
margin θ in (5), regularization parameter γ in
(2), random sampling parameters α and m.

Step 2. Initialize wE = (0, 0, . . . , 0) ∈ R
d .

Step 3. For t = 1, 2, . . . ,m
(a) Produce a bootstrap subset D(rt ) with size

�αn�.
(b) Perform FREL on D(rt ) to obtain a base

weighting result wD(rt ).
(c) wE = wE + 1

mwD(rt ).
Step 4. Output the ensemble feature weighting result wE .

D. Ensemble FREL

Ensemble learning is an effective approach for producing
robust and accurate learning solutions in machine learn-
ing [17], [18] as demonstrated by many significant applica-
tions [19]–[21]. For instance, a popular ensemble learning
making use of the bagging approach [22] consists in averaging
several estimators built from random subsamples of the
original data set.

Similar to the ensemble models for supervised learning,
there are two essential steps in ensemble feature selection.
The first step involves creating a set of different base feature
selectors, each provides its output, while the second step
aggregates the results of all base feature selectors [4].

In our case, bootstrap-based strategy as in [4] and [7]
is used to train base feature selectors derived from FREL
on m different bootstrap subsets of the original training set
D = {xi , yi }n

i=1. Ensemble feature weighting result is achieved
by averaging the obtained solutions from the base feature
selectors. Let 0 < α < 1 and �αn� be the integer closest to
αn. For t = 1, . . . ,m, let rt = {rt (1), rt (2), . . . , rt (�αn�)} be
an index sequence randomly drawn from the natural sequence
{1, . . . , n} without replacement. We denote the m bootstrap
subsets by D(rt ) = {xrt (k), yrt (k)}�αn�

k=1 for t = 1, . . . ,m and
the subsets are all drawn independently.

Let wD(rt ) denote the outcome of the feature weighting
algorithm after FREL is applied on the tth bootstrap training
subset D(rt ). Therefore, we obtain m base feature weight-
ing results {wD(r1), wD(r2), . . . , wD(rm)}. In this paper, the
ensemble result is obtained as

wE = 1

m

m∑

t=1

wD(rt ) (10)

which is aggregated by averaging the outputs of base feature
selectors. The pseudocode for the above discussed ensemble
FREL is provided in Algorithm 2.

III. STABILITY ANALYSIS

In this paper, the stability of FREL is considered in the
following sense: variations in outputs are small or bounded
in response to small variations in the input of the data set.
This may entail the following two scenarios. The first is
perturbation at the instance level caused by, for example,

removing samples from or adding samples to the data set.
The second is perturbation at the feature level caused by,
for example, adding noise to the features in the data set.
In addition, a combination of both types of perturbations may
impose on a data set and cause stability concerns [4].

The stability of several classification, regression, and sample
ranking methods has been analyzed thoroughly [23]–[25] in
the sense similar to that described above. However, the sta-
bility of feature selection algorithms has only been examined
empirically. This paper aims at providing a theoretical analysis
for the stability of some feature weighting algorithms under
FREL.

To account for small instance level perturbations, we only
need to consider removing one sample from the data set and
then analyzing the stability property of a feature weighting
algorithm. Stability consideration after adding a sample fol-
lows directly from the result of removing a sample. To account
for small feature level perturbations, we need to consider
changing one sample and examine its impact on the stability of
the algorithm. Before we proceed to analyzing both scenarios
described above, consider the following.

For a given training set D of size n from a certain
distribution P, its samples are drawn independent identically
distributed (i.i.d.) from P. Let D\i denote a modified training
data set by removing the i th training sample (xi , yi ) from the
original training data set D, where i ∈ {1, · · · , n}. We denote
by Di , the training set obtained by changing one sample from
(xi , yi ) to (x ′

i , y ′
i ).

Definition 2: Consider a feature weighting algorithm A with
output feature weight vectors denoted by wD and wD\i for
data set D and D\i , respectively. Algorithm A is uniformly
weighting stable with stability bound β (β ≥ 0) if for any D
of size n and any i ∈ {1, . . . , n}, we have

||wD −wD\i ||2 ≤ β. (11)

Intuitively, a smaller value of β corresponds to greater
stability. To consider stability properties of algorithm A with
the i th data sample distorted from the original i th data sample,
i.e., the training data set is changed from D to Di , we let the
feature weight vector wDi denote the output of algorithm A
for data set Di . Based on the uniform weighting stability defi-
nition in (11) and by applying the triangle inequality, we have

||wD −wDi ||2 = ||(wD −wD\i )− (wDi − wD\i )||2
≤ ||wD −wD\i ||2 + ||wDi − wD\i ||2
≤ 2β. (12)

Therefore, according to (12), the stability of changing one
sample can be reduced for analyzing the stability of removing
one sample. In other words, the uniform weighting stability
formulated under the removal of one training data sample
implies the same stability concept under the condition of one
sample deviates from the original data sample. As such, stabil-
ity in the sense of Definition 2 can be used for analyzing the
stability of algorithm A under the perturbations at both instance
and feature levels, which are described at the beginning of this
section.
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In the following sections, we will discuss the stability
of FREL with L2 and L1 regularizers, and the stability of
ensemble FREL, respectively.

A. Stability Analysis for FREL With L2 Regularizer

In this section, we examine stability properties of FREL
with R(w) in (2) being an L2 regularizer.

Remark 2: For this part of the stability analysis, given the
choice of the energy functions as in (8) and (9), we use the
shorthand notation of L(wT zi ) in place of the per-sample
loss function L(w, xi ) in (5), where zi is considered a trans-
formation of xi . For different loss functions in Remark 1,
the expressions of zi are different. For instance, if the log
loss is used, then zi = |xi − NH(xi )| − |xi − NM(xi )|.
Furthermore, if the training samples xi ’s are bounded and can
be normalized, then ||zi ||2 should be as well. We denote this
by ||zi ||2 ≤ φ.

Then, according to (2) and Remark 2 above, the objective
functions L D(w) and L D\i (w) with L2 regularizer are, respec-
tively, defined as follows:

L D(w) = 1

n

n∑

j=1

L(wT z j )+ γ ||w||22 (13)

L D\i (w) = 1

n

n∑

j=1, j �=i

L(wT z j )+ γ ||w||22. (14)

Theorem 1: Consider the FREL with L2 regularizer and
a given training set D. Let D contain n input samples
xi ∈ R

d with its corresponding transformation zi provided as
in Remark 2, and that ||zi ||2 ≤ φ (i = 1, . . . , n). Assume that
the per-sample loss function L(wT zi ) in (5) is Lipchitz with
constant δ. Let wD and wD\i be the feature weighting results
through minimizing the convex objective functions L D(w)
and L D\i (w) in (13) and (14), respectively. Then, FREL with
L2 regularizer is uniformly weighting stable with stability
bound β = δφ/nγ .

Proof: Refer to Appendix A.
Remark 3: Theorem 1 shows that FREL with L2 regularizer

has uniform weighting stability. Furthermore, the stability
bound approaches zero as O(1/n). Therefore, this is a tight
bound.

Remark 4: To consider stability in the sense of Definition 2,
for the case of removing q samples, the corresponding stability
bound can be obtained similarly to that for a single sample
removed and the bound is q times that of a single sample
removed as well.

B. Stability Analysis for FREL With L1 Regularizer

Now, we turn to stability analysis for FREL with L1 regu-
larizer. Due to the nature of the L1-norm, the feature selection
algorithm with L1 regularizer usually results in sparse solu-
tions, i.e., the feature vector output contains some elements
that are zero. Xu et al. [26] proved that sparsity and stability
are at odds with each other for classification and regression
problems. They show that sparse algorithms are not stable,
as defined in [23]. Specifically, if an algorithm encourages

sparsity, then it is susceptible to small variations in input. They
also proved that a sparse algorithm can identify redundant
features (IRFs). Being IRF means that if the two features are
highly dependent on each other, then removing one of the
features would not affect the class-discriminative power of the
algorithm. Therefore, a sparse algorithm may have nonunique
optimal solutions and thus may be ill-posed. In this paper, we
provide some constraints so that the stability of FREL with
L1 regularizer in the sense of Definition 2 can be preserved.

For a given training set D from distribution P, assume
that there exists a true unique unknown feature weighting
vector w�. Let wD and wD\i be the optimal estimates of w�,
respectively, where the optimality refers to that wD and wD\i

are optimal solutions as a result of minimizing the objective
loss functions L D(w) and L D\i (w), respectively

L D(w) = 1

n

n∑

j=1

L(w, x j )+ γ ||w||1 (15)

L D\i (w) = 1

n

n∑

j=1, j �=i

L(w, x j )+ γ ||w||1. (16)

Then, we have

||wD −wD\i ||2 = ||wD − w� − (wD\i −w�)||2
≤ ||wD − w�||2 + ||wD\i −w�||2. (17)

Let ||�w1||2 = ||wD −w�||2 and ||�w2||2 = ||wD\i −w�||2.
Then

||wD − wD\i ||2 ≤ || �w1||2 + || �w2||2. (18)

To carry on the discussion of uniform weighting stability
for FREL with L1 regularizer, we define the exactly sparse
model below.

Definition 3: If some feature weights in the feature weight-
ing vector are exactly zero, then this feature weighting model
is exactly sparse.

Moreover, to analyze the stability of FREL with L1 regu-
larizer, we also need some additional conditions, such as the
sample-averaged loss functions JD(w) = 1/n

∑n
j=1 L(w, x j )

and JD\i (w) = 1/n
∑n

j=1, j �=i L(w, x j ) as in (3) are differ-
entiable and they satisfy the strong convexity condition [27]
defined below.

Definition 4: The sample-averaged loss function JD(w) has
the strong convexity with parameter κD ≥ 0, if

JD(w
� + �w1)− JD(w

�) ≥ 〈�JD(w
�),�w1〉

+κD|| �w1||22 (19)

where 〈, 〉 is the inner product. Similarly, we can define strong
convexity for JD\i (w) on �w2 with parameter κD\i ≥ 0.

Remark 5: Refer to Remark 1 where we elaborated on some
per-sample loss functions for L(w, x j ). Among these func-
tions, the log, square-square, and square-exponential losses are
differentiable. Therefore, the corresponding sample-averaged
loss functions JD(w) and JD\i (w) are also differentiable.

Remark 6: For those differentiable per-sample loss functions
in Remark 5, it is evident that the square-exponential and
square-square losses are strongly convex. Just as introduced
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in [28], the log loss is also strongly convex. Then, their
corresponding sample-averaged loss functions JD(w) and
JD\i (w) are also strongly convex.

Theorem 2: Consider FREL with L1 regularizer and a
given training set D from distribution P. Let D contain n
input samples xi ∈ R

d (i = 1, . . . , n) and w� be the true
unique unknown feature weighting vector, and it is exactly
sparse. Assume the sample-averaged loss function JD(w) and
JD\i (w) are differentiable and have the strong convexity with
parameter κD ≥ 0 and κD\i ≥ 0 as in Definition 4, respec-
tively. Let wD and wD\i be the sparse feature weighting results
from minimizing the convex objective functions L D(w) and
L D\i (w) in (15) and (16), respectively. Then, for parameter
γ ≥ max[|| � JD(w

�)||∞, || � JD\i (w�)||∞], FREL with
L1 regularizer is uniformly weighting stable with stability
bound β = 2

√
dγ (1/κD + 1/κD\i ).

Proof: Refer to Appendix B.
Remark 7: For FREL with L1 regularizer, if its output

is exactly sparse and the sample-averaged loss functions
are strongly convex, then the feature weighting stability
bound is inversely affected by the strong convexity constants
κD and κD\i .

Remark 8: The bound also scales with the regularization
parameter γ . This makes sense since the more sparse solutions
lead to less feature weighting stability properties.

Remark 9: Consider stability in Definition 2 for the case of
removing q samples. Let the corresponding sample-averaged
loss function be strongly convex with parameter κD\\q ≥ 0.
Then, the stability bound for q removed samples can be
obtained similarly to that for a single sample remove, and
the stability bound is 2

√
dγ (1/κD + 1/κD\\q ).

C. Stability for Ensemble FREL

Based on Definition 2, the uniform weighting stability of
the ensemble FREL proposed in Section II-D is defined as
follows.

Definition 5: For a given training data set D = {xi , yi }n
i=1

and any i ∈ {1, . . . , n}, the ensemble FREL is uniformly
weighting stable with stability bound βE , if
∥∥∥∥∥Er1,...,rm

[
1

m

m∑

t=1

wD(rt )

]
− Er1,...,rm

[
1

m

m∑

t=1

wD\i (rt )

]∥∥∥∥∥
2

≤ βE (20)

where wD(rt ) is the base feature weighting result of FREL on
bootstrap subset D(rt ) whose size is �αn� (0 < α < 1),
and wD\i (rt ) is the base feature weighting result of FREL
on bootstrap subset D(rt ) with xi , i ∈ {1, . . . , n}, removed,
m is the number of bootstrap subsets, E is the expectation,
and for t = 1, . . . ,m, rt = {rt (1), rt (2), . . . , rt (�αn�)} is an
index sequence randomly drawn from the natural sequence
{1, . . . , n} without replacement.

Theorem 3: Consider ensemble FREL described in
Algorithm 2 and a given data set D containing n input
samples xi (i = 1, . . . , n). Bootstrap strategy is adopted
with the sampling parameter α (0 < α < 1) to create
m bootstrap subsets D(rt ) with size �αn� for t = 1, . . . ,m,
where rt = {rt (1), rt (2), . . . , rt (�αn�)} is an index sequence

randomly drawn from the natural sequence {1, . . . , n} without
replacement, and r1, . . . , rm are i.i.d. Let β be the uniform
stability bound of the base feature weighting algorithm FREL.
Then, ensemble FREL is uniformly weighting stable with
stability bound βE ≤ αβ.

Proof: Refer to Appendix C.
Remark 10: Theorem 3 indicates that ensemble feature

weighting has tighter stability bound than its base feature
weighting, which is consistent with observations from exper-
iments in [4] and [6] that ensemble strategy usually improves
feature selection stability.

Remark 11: For the case of removing q samples, the
corresponding stability bound can be obtained similarly to that
for a single removed sample and the bound is approximately
αqβ\\q , where β\\q is the stability bound for the base feature
weighting with q samples removed.

IV. EXPERIMENTS

In this section, we evaluate stability and accuracy of
(ensemble) FREL in comparisons with some popular fea-
ture weighting algorithms. Four real life problems are
considered.

The HDSSS problem is among the most challenging prob-
lems for feature selection, particularly if output stability is
desired. To evaluate and illustrate algorithm accuracy and
stability of FREL for HDSSS problems, we analyzed real-
world microarray data including TOX, SMK, leukemia [29],
and prostate [30]. The first two data sets are downloaded from
http://featureselection.asu.edu/datasets.php, while the later two
are available in [29] and [30]. The goal of analyzing these four
HDSSS problems is to identify those genetic expressions that
are linked to respective diseases.

The TOX data set contains 171 instances with 5748 genes.
They consist of myocarditis and dilated cardiomyopathy
(DCM) infected males and females as well as uninfected
males and females. The DCM is often caused by viral infec-
tions and can occur more frequently in men than women.
DCM infection increases a person’s risk of dying from heart
failure.

The SMK data set contains 187 smokers either with or
without lung cancer. The total number of genes to be tested
is 19 993.

Leukemias are primary disorders of the bone marrow. They
are malignant neoplasms of hematopoietic stem cells. The
leukemia data set to be analyzed includes 72 samples to be
tested, which are from acute leukemia patients, either acute
lymphoblastic leukemia or acute myelogenous leukemia. The
total number of genes to be tested is 7129.

The prostate data set contains 136 samples of prostate
cancer patients, which have 12 600 genes to be studied. Among
the samples, 77 are tumor and 59 are normal.

As described, the four data sets (TOX, SMK, leukemia, and
prostate) share the common traits of small samples (171, 187,
72, and 136) with an extremely high dimensionality in latent
variables (5748, 19 993, 7129, and 12 600). They are typical
HDSSS problems.
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A. Algorithms for Comparison

For HDSSS problems, it is generally accepted that conven-
tional feature selection algorithm should not be used directly
for obtaining stable feature outputs [6], [7], [10]. Instead,
ensemble algorithms are expected to improve stability proper-
ties of feature selection. We therefore focus on the ensemble
FREL provided in Algorithm 2 when conducting comparisons
in this paper. However, we still provide classification accuracy
results using the original FREL presented in Algorithm 1.

For comparison purposes, we consider three specific
FREL-based algorithms, as described in Algorithm 1:
Log+L2, Log+L1, and Square+L2. The Log+L2 consists of
log loss in (6) as per-sample loss function and L2 regularizer
||w||22 is used. For the Log+L1 algorithm, the per-sample loss
function is the same as in Log+L2, but L1 regularizer ||w||1 is
used. The Square+L2 is based on square-square loss function
in (7) and L2 regularizer. For a sample xi , the margin θ in
Square+L2 is set as the Manhattan distance between NM(xi )
and NH(xi ). The ensemble versions of these three algo-
rithms according to Algorithm 2 are named as En-Log+L2,
En-Log+L1, and En-Square+L2, respectively.

Since the focus of this paper is on feature weighting, we
therefore chose some popular feature weighting algorithms for
comparison. The algorithms include Relief, ReliefF [31]–[33],
Fisher score [34], En-Relief [4], En-ReliefF, En-Fisher,
and variance reduction (VR)-Lmba. En-Relief, En-ReliefF, and
En-Fisher are the ensemble versions of Relief, ReliefF,
and Fisher score, respectively. The implementations of the
En-Relief, En-ReliefF, and En-Fisher are similar to the ensem-
ble FREL as described in Algorithm 2 with Relief, ReliefF,
and Fisher score in place of the FREL, respectively.

The Relief algorithm is considered one of the most suc-
cessful feature selection algorithms due to its simplicity and
effectiveness [35]. The key idea of Relief is to iteratively
estimate feature weights according to their ability to discrim-
inate between the neighboring samples. In each iteration, a
sample xi is randomly selected and then two NNs of xi are
found, one from the same class and the other from a different
class. The weight of the pth feature is then updated based on
the distance between xi and its two NNs on the pth feature.
The ReliefF is an extension of Relief by considering several
NNs to deal with multiple class problems.

Here, we would like to highlight the relationship between
FREL and Relief (ReliefF). First of all, both algorithms can be
viewed as hypothesis-margin-based approaches [36]. However,
the differences between the two algorithms are evident: 1) our
proposed FREL is a systematic framework for stable feature
selection based on energy-based learning and regularization.
Many specific algorithms can be viewed as realizations of
FREL; 2) regularizations are considered in FREL but not in
Relief; 3) Relief directly calculates the feature weights based
on margins (distances) while FREL obtains feature weights
based on margin losses, and the loss functions can be selected
from a pool of candidate functions; and 4) a stability analysis
for FREL is provided for the first time.

Fisher score is one of the most widely used feature selection
methods. The key idea of Fisher score is to find feature weights

such that in the data space spanned by the weighted features,
the distances between data points in different classes are as
large as possible, while the distances between data points in
the same class are as small as possible. Then, the criterion
for Fisher score prefers features that have similar values for
the samples from the same class and different values for the
samples from different classes. Feature weights are obtained
by computing the deviation of each feature from its mean value
on all classes.

The VR-Lmba is a nonensemble stable feature
weighting algorithm. VR-Lmba uses a sample weighting
strategy [9], [10] to improve the stability of feature weighting
algorithm—Lmba [37]. The sample weighting strategy
introduced in [9] and [10] is an effective approach to
improve the stability for any feature selection methods.
It assigns different weights to samples before performing
feature selection with the aim of VR. In this paper, we
combine the sample weighting strategy with Lmba to obtain
a stable feature weighting algorithm VR-Lmba, as presented
in [7]. The feature weighting algorithm—Lmba is derived
from energy-based model without regularization. In other
words, the objective function for Lmba is similar to that
in (2) without R(w). The square-square loss mentioned in
Remark 1 is used as per-sample loss function L(w, xi ) in (5).
Several NNs in the predefined range are considered in Lmba.

B. Stability Measurement

Since in almost all feature selection applications, the ulti-
mate outputs of a feature selector should be a subset of features
that are considered most prominent. Therefore, in the litera-
ture, one usually makes use of the corresponding feature ranks
in place of the feature weights for performance evaluation.
Under the same consideration to evaluate the stability of FREL
in this paper, we first compute the feature weights as outputs
of FREL, then these weights are turned into feature ranks, as
in [4] and [7]. Therefore, our stability measure used in this
paper is based on feature ranks.

To be statistically significant, several different sets of
feature ranking results are obtained to empirically compute
the stability measure. We therefore use the bootstrap-based
strategy without replacement. Consider the data set D with
n instances and d features. Then, c sampling subsets D(rl ),
l = 1, . . . , c, of size �μn� (0 < μ < 1) are drawn randomly
from D based on bootstrap sampling without replacement.
Note that, we name the sampling subset D(rl ) as a sample
subset to distinguish it from a bootstrap subset in ensemble
feature weighting procedure. Subsequently, feature weighting
algorithms are performed on each of the c sample subsets. Just
as emphasized earlier, the feature weighting results should be
transformed to feature ranking results to calculate the stability
measure. As such, each algorithm will result in c feature
ranking results {R1, R2, . . . , Rc} on c sample subsets. For
nonensemble feature weighting algorithm, such as VR-Lmba,
Log+L2, and so on, to transform its feature weighting result
on each sample subset into feature ranking result, the rank
value for a feature is determined as follows. The best feature
with the largest weight is assigned rank 1, and the worst rank d.
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For ensemble feature weighting, feature ranking is obtained as
described below.

Similar to the ensemble procedure described in
Algorithm 2, each sample subset D(rl ) with size s = �μn�
(0 < μ < 1), is still randomly sampled using bootstrap
strategy without replacement to produce m bootstrap subsets
D(rlt ) (t = 1, . . . ,m) with size �αs� (0 < α < 1), and
feature weighting algorithms (Relief, ReliefF, Fisher score,
and our proposed FREL), are performed on each bootstrap
subset D(rlt ) (t = 1, . . . ,m) to obtain m base feature
weighting vectors {wD(rl1), . . . , wD(rlm )}. To obtain the
ensemble feature ranking result for the ensemble feature
weighting algorithm on each sample subset D(rl ), m base
feature weighting vectors are correspondingly transformed to
m base feature ranking vectors {vD(rl1), . . . , vD(rlm)} based on
the assignment rule above. The final feature rank for each
sample subset D(rl ), l = 1, . . . , c, is obtained by averaging
over the respective bootstrapping subset-based feature ranks,
i.e., Rl = 1/m

∑m
t=1 vD(rlt ) [4].

Consider a feature ranking vector set {R1, R2, . . . , Rc},
where Rl = (R1

l , R2
l , . . . , Rd

l ), l = 1, 2, . . . , c, is the feature
ranking result for the d features on the lth sample subset. Fea-
ture selection stability is measured by comparing similarities
among the feature outputs on the c sample subsets. The more
similar the outputs are, the higher the stability measure is.
The overall stability is defined as the average similarity based
on all pairwise similarities between different feature ranking
results

Rsta = 2

c(c − 1)

c−1∑

l=1

c∑

l′=l+1

Sim(Rl , Rl′ ) (21)

where Sim(Rl , Rl′ ) represents a similarity measure between
feature ranking results Rl and Rl′ . For feature ranking, the
Spearman rank correlation coefficient [4], [38] is used to
calculate the similarity

Sim(Rl , Rl′ ) = 1 − 6
d∑

p=1

(R p
l − R p

l′ )
2

d(d2 − 1)
. (22)

C. Experiments Performed for Stability

Based on the stability measurement procedure described in
Section IV-B, for a given data set, c = 10 sample subsets
containing μ = 90% of the data are randomly drawn without
replacement using bootstrap-based strategy. This percentage
was chosen as in [4] to assess stability with respect to relatively
small changes in the data set. For example, leukemia data
set is randomly drawn using bootstrap-based strategy without
replacement to create 10 sample subsets, thus each sample
subset contains 64 patient samples with 7129 genes.

Then, for each sample subset, ensemble feature weighting
algorithms (En-Log+L2 with γ = 1, En-Log+L1 with γ =
0.01, En-Square+L2 with γ = 0.1, En-Relief, En-ReliefF
with 10 NNs, and En-Fisher) are applied as described in
Section IV-B with α = 0.9 to obtain feature ranking results.
Simultaneously, the nonensemble feature weighting algorithm
VR-Lmba, which is another method for improving the stability
of feature selection, is also applied to each sample subset. For

Fig. 1. Experimental evaluation of stability for m = 20, the number of
base feature selectors, for each of the seven candidate stable feature selection
algorithms.

10 sample subsets, we obtain 10 feature ranking results for
each feature weighting algorithm. For each feature weighting
algorithm, the similarity between feature ranking result pairs is
calculated using Spearman rank correlation coefficient in (22).
The stability of each feature weighting algorithm is thus
the average similarity over all pairwise similarities calculated
by (21).

Moreover, we examine the effect of the regularization
parameter γ in (2) on the stability of our FREL. As examples,
one original algorithm derived from FREL, i.e., Log+L2, and
one ensemble algorithm derived from ensemble FREL, i.e.,
En-Log+L2 with m = 20, are chosen.

D. Experimental Results for Stability

We first examine the effect of the number of bootstrap
subsets used in ensemble methods, namely, how m affects
the stability measure. We see that all algorithms display an
upward trend in stability as m increases, but saturates at around
m = 20. Since VR-Lmba is not an ensemble method, its
stability remains constants. The stability results for ensemble
feature weighting algorithms with m = 20 and VR-Lmba
are therefore shown in Fig. 1. From Fig. 1, we observe
that the proposed ensemble FREL with L2 regularizer
(En-log+L2 and En-Square+L2), always have the highest sta-
bility among all the algorithms. Our algorithm with L1 regular-
izer (En-log+L1), has the lowest stability, which is consistent
with the observation in [26] that sparsity and stability are at
odds with each other.

On the other hand, we examine the effect of the regular-
ization parameter γ in (2) on the stability of FREL (Log+L2
and En-Log+L2). Results on leukemia and prostate data sets
are included. Similar results were obtained for the other two
data sets. They are not included here due to space limitations.
The experimental results are shown in Fig. 2. We observe that
along with the increase in γ , the stability of Log+L2 and
En-Log+L2 are improved, which is consistent with our
theoretical analysis.

E. Experiments Performed for Accuracy

A good feature selector has to be both stable and accurate.
Once stable features are selected, an important consideration
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Fig. 2. Experimental evaluation of stability as a function of γ , the
regularization parameter in (2), for Log+L2 and En-Log+L2 on leukemia
and prostate.

in many applications is the classification accuracy using the
selected features. The accuracy has to be evaluated in conjunc-
tion with a classification model based on the selected features.
In experiments conducted in this paper, 1-NN (1NN) classifier,
3-NNs (3NN) classifier, the linear support vector machine
(SVM) with C = 1 [39], and SVM with polynomial kernel are
used as classification models since they are generally consid-
ered easy to apply and good classifiers. Each classifier is used
for classification based on each of the feature weighting algo-
rithms introduced in Section IV-A. Classification accuracy is
assessed using a 10-fold cross-validation. For each fold, a fea-
ture weighting algorithm was applied to the training data to
obtain the feature ranking result. For ensemble feature weight-
ing algorithms (En-log+L2, En-log+L1, En-Square+L2,
En-Relief, En-ReliefF, and En-Fisher), based on the exper-
imental results in Section IV-D, for each fold, m = 20
bootstrap subsets of training data were randomly drawn with
α = 0.9 to create the ensemble feature weighting algorithms.
After the features are ranked in descending order, different
numbers of important features are selected with top ranks one
by one to create classifiers. Note that it is often observed in
microarray data that only a small amount (≈50) of features,
i.e., genes, is relevant [9], [10], [16], thus the number of
selected important features from ranking results is less than
100 in our experiments. Once test result based on testing
data is obtained for each fold, the final classification accuracy
results are obtained by averaging over the 10 folds.

F. Experimental Results for Accuracy

Our accuracy results are provided for the case of using
50 selected features. Fig. 3 shows a summary of the accu-
racy values for regular feature selection algorithms (Lmba,
Relief, ReliefF with 10 NNs, Fisher score, Log+L2, Log+L1,
and Square+L2) using 1NN, 3NN, linear SVM, and poly-
nomial kernel SVM classifier. Fig. 4 shows a summary of
accuracy values for algorithms designed to improve stability
(En-Relief, En-ReliefF, En-Fisher, En-Log+L2, En-Log+L1,
En-Square+L2, and VR-Lmba) using 1NN, 3NN, linear SVM,
and polynomial kernel SVM classifier.

These results as summarized in Figs. 3 and 4 show that
no one algorithm is consistently better than any other on the
four tested data sets. However, FREL and ensemble FREL are
comparable with other algorithms most of the time.

Fig. 3. Experimental results for accuracy of original feature selection methods
using different classifiers. (a) 1NN. (b) 3NN. (c) Linear SVM. (d) Polynomial
SVM.

G. Evaluation of Tradeoff Between Stability and Accuracy

To measure the tradeoff between stability and classifi-
cation accuracy of a feature selection algorithm, we take
reference of the robustness-performance tradeoff in [4] to
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Fig. 4. Experimental results for accuracy of methods designed for stable
feature selection using different classifiers. (a) 1NN. (b) 3NN. (c) Linear SVM.
(d) Polynomial SVM.

measure the tradeoff between feature stability and clas-
sification accuracy in this paper. Specifically, we define
stability-accuracy trade-off (SAT) as SAT = (2 × stability ×
accuracy)/(stability + accuracy) where stability can be imple-

Fig. 5. Experimental results about tradeoff between stability and accuracy
for methods designed for stable feature selection using different classifiers.
(a) 1NN. (b) 3NN. (c) Linear SVM. (d) Polynomial SVM.

mented by Rsta in (21), accuracy is evaluated using the classi-
fication outcome based on the selected features. The stability
value for ensemble feature weighting when m = 20 and the
corresponding accuracy when the number of selected feature is
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50 are used to calculate their tradeoff. The experimental results
for different classifiers are shown in Fig. 5 where ensemble
FREL with L2 regularizer is shown providing a better tradeoff
between stability and accuracy than other compared methods.

V. CONCLUSION

In this paper, we have proposed a new framework for
FREL, which includes many useful stable feature weighting
algorithms as its realizations. We also provide for the first
time the theoretical results for the uniform weighting stability
of FREL with L1 and L2 regularizers. Ensemble FREL is
introduced as a means of further improvement of stability, the
stability of which is also provided. To evaluate FREL and
ensemble FREL performance, we make use of three specific
realizations, Log+L1, Log+L2, and Square+L2, respectively.
Several other popular feature selection algorithms are included
in comparison with benchmark performances based on chal-
lenging HDSSS problems. Our experimental results show that
our ensemble FREL when using the L2 regularizer outper-
forms other algorithms in stability while providing comparable
classification accuracy.

APPENDIX A
PROOF OF THE THEOREM 1

Proof: Let �wD = wD − wD\i , where wD and wD\i are
the feature weighting results through minimizing the convex
objective functions L D(w) and L D\i (w) in (13) and (14),
respectively. As such L D(wD) and L D\i (wD\i ) retain mini-
mum values at wD and wD\i , respectively. Accordingly, this
leads to the following for any a ∈ [0, 1]:

L D(wD)− L D(wD − a �wD) ≤ 0 (23)

L D\i (wD\i )− L D\i (wD\i + a �wD) ≤ 0. (24)

Equations (13) and (14) are used to replace the
corresponding terms in (23) and (24). It is evident
that 1/n

∑n
j=1 L(wT

Dz j ) = 1/n
∑n

j=1, j �=i L(wT
Dz j ) +

1/nL(wT
Dzi ). We use a shorthand notation 1/n

∑
j \i for

1/n
∑n

j=1, j �=i for the ease of discussion. Then, using (23)
and (24) together, we have

1

n

∑

j \i

L(wT
Dz j )+ 1

n
L(wT

Dzi )

− 1

n

∑

j \i

L((wD − a � wD)
T z j )

− 1

n
L((wD − a �wD)

T zi )+ 1

n

∑

j \i

L(wT
D\i z j )

− 1

n

∑

j \i

L((wD\i + a �wD)
T z j )+ γ.||wD||22

−γ ||wD − a �wD ||22 + γ ||wD\i ||22
−γ ||wD\i + a �wD||22

≤ 0. (25)

Since the per-sample loss function in (5) is convex, then by
Jensen’s inequality

L((wD − a �wD)
T z j ) = L((1−a)wT

Dz j +awT
D\i z j )

≤ (1−a)L(wT
Dz j )+aL(wT

D\i z j )

= L(wT
Dz j )

−a(L(wT
Dz j )−L(wT

D\i z j )). (26)

Similarly, we also can obtain

L((wD\i + a �wD)
T z j )) ≤ L(wT

D\i z j )+ a(L(wT
Dz j )

−L(wT
D\i z j )). (27)

Substituting two identities (26) and (27) into (25) leads to

||wD||22 − ||wD − a � wD||22 − ||wD\i + a �wD||22
+||wD\i ||22

≤ a

nγ
(L(wT

D\i zi )− L(wT
Dzi )). (28)

Note that the inequality L(wT
D\i zi ) − L(wT

Dzi ) ≤ δ|wT
D\i zi −

wT
Dzi | holds because the per-sample loss function L(wT zi ) is

Lipchitz with δ [40]. Therefore

||wD||22 − ||wD − a � wD||22 − ||wD\i + a �wD||22
+||wD\i ||22 ≤ aδ

nγ
|wT

D\i zi −wT
Dzi |

= aδ

nγ
| �wT

Dzi |. (29)

If we set a = 1/2, the left-hand side of (29) amounts to

||wD||22 + ||wD\i ||22 − 1

2
||wD + wD\i ||22

= 1

2
||wD||22 + 1

2
||wD\i ||22 −wT

DwD\i

= 1

2
||wD −wD\i ||22

= 1

2
|| �wD ||22. (30)

Thus

|| �wD ||22 ≤ δ

nγ
| � wT

Dzi |. (31)

Then, based on the Cauchy–Schwarz inequality, we have

| �wT
Dzi | ≤ || � wD||2||zi ||2. (32)

Combining (31) and (32) above, and using ||zi ||2 ≤ φ, we
obtain the uniform stability bound for FREL with L2 regular-
izer

||wD −wD\i ||2 = || � wD||2 ≤ δφ

nγ
. (33)

�
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APPENDIX B
PROOF OF THE THEOREM 2

Proof: Let wD and wD\i be the optimal estimates of w�,
respectively, where the optimality refers to that wD and
wD\i are optimal solutions as a result of minimizing the
objective loss functions L D(w) and L D\i (w) in (15) and (16),
respectively. We have ||wD −wD\i ||2 ≤ ||�w1||2 +||�w2||2,
as in (18).

To analyze the two terms || �w1||2 and || �w2||2 in (18),
we start with the decomposability property of L1 regularizer
below.

In consideration of exact sparsity as defined in
Definition 3, the feature weighting results are d-dimensional
vectors {w(1),w(2), . . . , w(d)} with some weights being
exactly zero. Suppose the number of features with nonzero
weights is b. Let S be an index set whose b components
correspond to the index of those features with nonzero
weights. For example, S = {1, 2} indicates that those weights
from w(3) through w(d) are zeros while b = 2. Let R

d be
the d-dimension real space. Then, we define the subspace M
as

M := {σ ∈ R
d | σp = 0 for all p /∈ S}. (34)

The orthogonal complement subspace of M is

M⊥ := {ψ ∈ R
d | ψp = 0 for all p ∈ S}. (35)

Remark 12: Subspace M is the model subspace capturing
the constraints specified by the L1 regularizer in L D(w) or
L D\i (w), while M⊥ is the orthogonal complement subspace
of M , and it is considered a perturbation subspace deviating
away from the model subspace M . Then, M

⋃
M⊥ = R

d .
We are ready to define the decomposability property of

L1 regularizer with respect to the model subspace and its
orthogonal complement subspace as in [41]–[43].

Definition 6: Given a subspace pair M and M⊥ as defined
in (34) and (35), respectively, an L1 regularizer is decompos-
able with respect to (M,M⊥), such that

||σ + ψ||1 = ||σ ||1 + ||ψ||1 (36)

for all σ ∈ M and ψ ∈ M⊥.
Next, we analyze the bound of ||�w1||2 in (18). To simplify

the notation, we drop the subscript of �w1 and use �w instead
in this proof. Let

F(�w) = L D(w
� + �w)− L D(w

�). (37)

Since wD = w� + �w is the minimizer of L D(w) in (15),
then �w must satisfy F(�w) ≤ 0.

If L D(w) is replaced by the right-hand side of (15), F(�w)
is then changed as

F(�w) = JD(w
� + �w)− JD(w

�)

+γ (||w� + �w||1 − ||w�||1). (38)

Note that the function F(�w) consists of two differ-
ences: one is between the sample-averaged loss functions,
i.e., JD(w

� + �w) − JD(w
�), and the other is between the

regularizers, i.e., ||w� + �w||1 − ||w�||1.

Consider first the difference between regularizers ||w� +
�w||1 − ||w�||1. Based on the subspaces M and M⊥ defined
above, it is evident that w� = w�M + w�

M⊥ , where w�M
and w�

M⊥ are the projections of w� onto subspace M and
its orthogonal complement subspace M⊥, respectively. The
projection operation is defined as

w�M = M (w
�) := argminu∈M ||w� − u||2. (39)

Similarly, we can obtain �w = �wM + �wM⊥ , where �wM

and �wM⊥ are the projections of �w onto subspaces M and
M⊥, respectively. The definitions for w�

M⊥ , �wM , and �wM⊥
are given in an analogous manner to w�M .

Then, by the triangle inequality, we have ||w�||1 = ||w�M +
w�

M⊥||1 ≤ ||w�M ||1 + ||w�
M⊥||1 and

||w� + �w||1 = ||w�M +w�M⊥ + �wM + �wM⊥||1
≥ ||w�M + �wM⊥||1 − ||w�M⊥ + �wM ||1
≥ ||w�M + �wM⊥||1 − ||w�M⊥||1

−|| �wM ||1. (40)

By the decomposability property of L1 regularizer as in
Definition 6, ||w�M + �wM⊥||1 = ||w�M ||1 + || � wM⊥||1 is
obtained, so that ||w� + �w||1 ≥ ||w�M ||1 + || � wM⊥||1 −
||w�

M⊥||1 − || � wM ||1. Therefore

||w� + �w||1 − ||w�||1 ≥ || �wM⊥||1 − || � wM ||1
−2||w�M⊥||1. (41)

For an exactly sparse model as in Definition 3, define a
model subspace M containing w�, i.e., w� ∈ M , to guarantee
||w�

M⊥||1 = 0 [41]–[43], and obtain

||w� + �w||1 − ||w�||1 ≥ || � wM⊥||1 − || �wM ||1. (42)

Now, we turn to the difference between the sample-averaged
loss functions JD(w

�+�w)−JD(w
�) in F(�w), as defined

in (38). To analyze the differences between the sample-
averaged loss functions in F(�w), we let the sample-averaged
loss functions JD(w) be differentiable and satisfy strong
convexity as in Definition 4. Based on (42) and the strong
convexity of JD(w) in Definition 4, the function F(�w) is
expressed as

F(�w) ≥ JD(w
� + �w)− JD(w

�)

+γ (|| �wM⊥||1 − || � wM ||1)
≥ 〈�JD(w

�),�w〉 + κD|| �w||22
+γ (|| �wM⊥||1 − || � wM ||1). (43)

By the Cauchy–Schwarz inequality application, we have

|〈�JD(w
�),�w〉| ≤ || � JD(w

�)||∞|| �w||1. (44)

Without loss of generality, assume that

γ ≥ || � JD(w
�)||∞. (45)

We can conclude that 〈�JD(w
�),�w〉 ≥ −γ || � w||1. Thus

F(�w) ≥ κD|| �w||22 + γ (|| �wM⊥||1 − || �wM ||1)
−γ || �w||1. (46)
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By the triangle inequality, ||�w||1 = ||�wM⊥ +�wM ||1 ≤
|| �wM⊥||1 + || �wM ||1, and hence

F(�w) ≥ κD|| � w||22 − 2γ || � wM ||1. (47)

Note that, ||�wM ||1 ≤ √
d||�wM ||2. Since the projection

�wM is defined similarly to (39) in terms of the L2-norm, it
is nonexpansive. Since 0 ∈ M

|| �wM ||2 = ||M(�w)−M (0)||2 ≤ || � w − 0||2
= || �w||2. (48)

In the end, we obtain

F(�w) ≥ κD|| � w||22 − 2
√

dγ || � w||2. (49)

As discussed above, F(�w) ≤ 0

κD|| � w||22 − 2
√

dγ || � w||2 ≤ 0. (50)

Then, we obtain

|| �w||2 ≤ 2
√

dγ

κD
(51)

and we change notation �w back to �w1, then || � w1||2 ≤
2
√

dγ /κD .
Now, we analyze the bound of �w2. Similarly, we let

F(�w2) be

F(�w2) = L D\i (w� + �w2)− L D\i (w�). (52)

Similar to the analysis for F(�w) above, we can obtain

|| �w2||2 ≤ 2
√

dγ

κD\i
(53)

with γ ≥ || � JD\i (w�)||∞.
Based on (18) and without loss of generality, assume

γ ≥ max[|| � JD(w
�)||∞, || � JD\i (w�)||∞] (54)

we obtain the stability bound of feature weighting with L1
regularizer

||wD −wD\i ||2 ≤ || �w1||2 + || � w2||2
≤ 2

√
dγ

(
1

κD
+ 1

κD\i

)
. (55)

�

APPENDIX C
PROOF OF THE THEOREM 3

Proof: For the uniform stability of ensemble FREL in (20),
the left side can be bounded by taking the L2 norm inside
the expectation by Jensen’s inequality. According to Jensen’s
inequality, let f be a convex function and x be a random
variable. Then, f (E(x)) ≤ E( f (x)). For our case, L2-norm is
convex, so we obtain

βE =
∥∥∥∥∥Er1,...,rm

[
1

m

m∑

t=1

wD(rt ) − 1

m

m∑

t=1

wD\i (rt )

]∥∥∥∥∥
2

≤ Er1,...,rm

[∥∥∥∥∥
1

m

m∑

t=1

wD(rt ) − 1

m

m∑

t=1

wD\i (rt )

∥∥∥∥∥
2

]
. (56)

Since r1, . . . , rm are i.i.d. and suppose they have the same
distribution as r , which models bootstrapping once, as in [24].
By the triangle inequality

βE ≤ 1

m

m∑

t=1

Ert [||wD(rt) −wD\i (rt )||2]

= Er [||wD(r) −wD\i (r)||2] = Er [|| � wD(r)||2]. (57)

Therefore, according to (57), the ensemble stability bound may
now be considered similarly as in Definition 2 of removing a
single sample xi from the data set D. Since r is a sampled
subset of {1, 2, . . . , n}, we need to consider two possibilities
of whether i belongs to r or not. To do so, we introduce
an indicator function I(.). Note that if i is not in r , which
means the sample xi is not in the bootstrap subset D(r), i.e.,
D(r) = D\i (r), then the term Er [|| � wD(r)||2I(i /∈ r)] = 0.
We have the following:

βE ≤ Er [|| � wD(r)||2(I(i ∈ r)+ I(i /∈ r))]
= Er [|| � wD(r)||2I(i ∈ r)] + Er [|| � wD(r)||2I(i /∈ r)]
= Er [|| � wD(r)||2I(i ∈ r)]. (58)

The size of bootstrap subset D(r) is �αn� (0 < α < 1),
then Er (I(i ∈ r)) = �αn�/n ≈ α because this sampling is
done without replacement, and || � wD(r)||2 ≤ β due to the
uniform stability of the base feature weight result, then we
have

βE ≤ αβ. (59)

�
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